Loading…

Micromechanical modeling of 8-harness satin weave glass fiber-reinforced composites

This study introduces a unit cell-based finite element micromechanical model that accounts for correct post cure fabric geometry, in situ material properties and void content within the composite to accurately predict the effective elastic orthotropic properties of 8-harness satin weave glass fiber-...

Full description

Saved in:
Bibliographic Details
Published in:Journal of composite materials 2017-03, Vol.51 (5), p.705-720
Main Authors: Choudhry, RS, Khan, Kamran A, Khan, Sohaib Z, Khan, Muhammad A, Hassan, Abid
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c323t-bcbd08027c9fc399df4c49cf9b49294ef3e13579988f44dab89074f5ad4317d43
cites cdi_FETCH-LOGICAL-c323t-bcbd08027c9fc399df4c49cf9b49294ef3e13579988f44dab89074f5ad4317d43
container_end_page 720
container_issue 5
container_start_page 705
container_title Journal of composite materials
container_volume 51
creator Choudhry, RS
Khan, Kamran A
Khan, Sohaib Z
Khan, Muhammad A
Hassan, Abid
description This study introduces a unit cell-based finite element micromechanical model that accounts for correct post cure fabric geometry, in situ material properties and void content within the composite to accurately predict the effective elastic orthotropic properties of 8-harness satin weave glass fiber-reinforced phenolic composites. The micromechanical model utilizes a correct post cure internal architecture of weave, which was obtained through X-ray microtomography tests. Moreover, it utilizes an analytical expression to update the input material properties to account for in situ effects of resin distribution within yarn (the yarn volume fraction) and void content on yarn and matrix properties. This is generally not considered in modeling approaches available in literature and in particular, it has not been demonstrated before for finite element micromechanics models of 8-harness satin weave composites. The unit cell method is used to obtain the effective responses by applying periodic boundary conditions. The outcome of the analysis based on the proposed model is validated through experiments. After validation, the micromechanical model was further utilized to predict the unknown effective properties of the same composite.
doi_str_mv 10.1177/0021998316649782
format article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_0021998316649782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0021998316649782</sage_id><sourcerecordid>10.1177_0021998316649782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-bcbd08027c9fc399df4c49cf9b49294ef3e13579988f44dab89074f5ad4317d43</originalsourceid><addsrcrecordid>eNp1UE1LxDAUDKJgXb17zB-IJk3aNEdZ_IIVDyp4K2ny0s3SJktSFf-9LetJ8PIevJl5zAxCl4xeMSblNaUlU6rhrK6Fkk15hApWcUqk4u_HqFhgsuCn6CznHaVUMlEX6OXJmxRHMFsdvNEDHqOFwYceR4cbstUpQM4468kH_AX6E3A_6PnifAeJJPDBxWTAYhPHfcx-gnyOTpweMlz87hV6u7t9XT-QzfP94_pmQwwv-UQ601na0FIa5QxXyjphhDJOdUKVSoDjwHglZ9ONE8LqrlFUCldpKziT81ghevg7J8g5gWv3yY86fbeMtksp7d9SZgk5SLLuod3FjxRmh__zfwDa8mKZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Micromechanical modeling of 8-harness satin weave glass fiber-reinforced composites</title><source>Sage Journals Online</source><creator>Choudhry, RS ; Khan, Kamran A ; Khan, Sohaib Z ; Khan, Muhammad A ; Hassan, Abid</creator><creatorcontrib>Choudhry, RS ; Khan, Kamran A ; Khan, Sohaib Z ; Khan, Muhammad A ; Hassan, Abid</creatorcontrib><description>This study introduces a unit cell-based finite element micromechanical model that accounts for correct post cure fabric geometry, in situ material properties and void content within the composite to accurately predict the effective elastic orthotropic properties of 8-harness satin weave glass fiber-reinforced phenolic composites. The micromechanical model utilizes a correct post cure internal architecture of weave, which was obtained through X-ray microtomography tests. Moreover, it utilizes an analytical expression to update the input material properties to account for in situ effects of resin distribution within yarn (the yarn volume fraction) and void content on yarn and matrix properties. This is generally not considered in modeling approaches available in literature and in particular, it has not been demonstrated before for finite element micromechanics models of 8-harness satin weave composites. The unit cell method is used to obtain the effective responses by applying periodic boundary conditions. The outcome of the analysis based on the proposed model is validated through experiments. After validation, the micromechanical model was further utilized to predict the unknown effective properties of the same composite.</description><identifier>ISSN: 0021-9983</identifier><identifier>EISSN: 1530-793X</identifier><identifier>DOI: 10.1177/0021998316649782</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Journal of composite materials, 2017-03, Vol.51 (5), p.705-720</ispartof><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-bcbd08027c9fc399df4c49cf9b49294ef3e13579988f44dab89074f5ad4317d43</citedby><cites>FETCH-LOGICAL-c323t-bcbd08027c9fc399df4c49cf9b49294ef3e13579988f44dab89074f5ad4317d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids></links><search><creatorcontrib>Choudhry, RS</creatorcontrib><creatorcontrib>Khan, Kamran A</creatorcontrib><creatorcontrib>Khan, Sohaib Z</creatorcontrib><creatorcontrib>Khan, Muhammad A</creatorcontrib><creatorcontrib>Hassan, Abid</creatorcontrib><title>Micromechanical modeling of 8-harness satin weave glass fiber-reinforced composites</title><title>Journal of composite materials</title><description>This study introduces a unit cell-based finite element micromechanical model that accounts for correct post cure fabric geometry, in situ material properties and void content within the composite to accurately predict the effective elastic orthotropic properties of 8-harness satin weave glass fiber-reinforced phenolic composites. The micromechanical model utilizes a correct post cure internal architecture of weave, which was obtained through X-ray microtomography tests. Moreover, it utilizes an analytical expression to update the input material properties to account for in situ effects of resin distribution within yarn (the yarn volume fraction) and void content on yarn and matrix properties. This is generally not considered in modeling approaches available in literature and in particular, it has not been demonstrated before for finite element micromechanics models of 8-harness satin weave composites. The unit cell method is used to obtain the effective responses by applying periodic boundary conditions. The outcome of the analysis based on the proposed model is validated through experiments. After validation, the micromechanical model was further utilized to predict the unknown effective properties of the same composite.</description><issn>0021-9983</issn><issn>1530-793X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAUDKJgXb17zB-IJk3aNEdZ_IIVDyp4K2ny0s3SJktSFf-9LetJ8PIevJl5zAxCl4xeMSblNaUlU6rhrK6Fkk15hApWcUqk4u_HqFhgsuCn6CznHaVUMlEX6OXJmxRHMFsdvNEDHqOFwYceR4cbstUpQM4468kH_AX6E3A_6PnifAeJJPDBxWTAYhPHfcx-gnyOTpweMlz87hV6u7t9XT-QzfP94_pmQwwv-UQ601na0FIa5QxXyjphhDJOdUKVSoDjwHglZ9ONE8LqrlFUCldpKziT81ghevg7J8g5gWv3yY86fbeMtksp7d9SZgk5SLLuod3FjxRmh__zfwDa8mKZ</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Choudhry, RS</creator><creator>Khan, Kamran A</creator><creator>Khan, Sohaib Z</creator><creator>Khan, Muhammad A</creator><creator>Hassan, Abid</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201703</creationdate><title>Micromechanical modeling of 8-harness satin weave glass fiber-reinforced composites</title><author>Choudhry, RS ; Khan, Kamran A ; Khan, Sohaib Z ; Khan, Muhammad A ; Hassan, Abid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-bcbd08027c9fc399df4c49cf9b49294ef3e13579988f44dab89074f5ad4317d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choudhry, RS</creatorcontrib><creatorcontrib>Khan, Kamran A</creatorcontrib><creatorcontrib>Khan, Sohaib Z</creatorcontrib><creatorcontrib>Khan, Muhammad A</creatorcontrib><creatorcontrib>Hassan, Abid</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choudhry, RS</au><au>Khan, Kamran A</au><au>Khan, Sohaib Z</au><au>Khan, Muhammad A</au><au>Hassan, Abid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromechanical modeling of 8-harness satin weave glass fiber-reinforced composites</atitle><jtitle>Journal of composite materials</jtitle><date>2017-03</date><risdate>2017</risdate><volume>51</volume><issue>5</issue><spage>705</spage><epage>720</epage><pages>705-720</pages><issn>0021-9983</issn><eissn>1530-793X</eissn><abstract>This study introduces a unit cell-based finite element micromechanical model that accounts for correct post cure fabric geometry, in situ material properties and void content within the composite to accurately predict the effective elastic orthotropic properties of 8-harness satin weave glass fiber-reinforced phenolic composites. The micromechanical model utilizes a correct post cure internal architecture of weave, which was obtained through X-ray microtomography tests. Moreover, it utilizes an analytical expression to update the input material properties to account for in situ effects of resin distribution within yarn (the yarn volume fraction) and void content on yarn and matrix properties. This is generally not considered in modeling approaches available in literature and in particular, it has not been demonstrated before for finite element micromechanics models of 8-harness satin weave composites. The unit cell method is used to obtain the effective responses by applying periodic boundary conditions. The outcome of the analysis based on the proposed model is validated through experiments. After validation, the micromechanical model was further utilized to predict the unknown effective properties of the same composite.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0021998316649782</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9983
ispartof Journal of composite materials, 2017-03, Vol.51 (5), p.705-720
issn 0021-9983
1530-793X
language eng
recordid cdi_crossref_primary_10_1177_0021998316649782
source Sage Journals Online
title Micromechanical modeling of 8-harness satin weave glass fiber-reinforced composites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromechanical%20modeling%20of%208-harness%20satin%20weave%20glass%20fiber-reinforced%20composites&rft.jtitle=Journal%20of%20composite%20materials&rft.au=Choudhry,%20RS&rft.date=2017-03&rft.volume=51&rft.issue=5&rft.spage=705&rft.epage=720&rft.pages=705-720&rft.issn=0021-9983&rft.eissn=1530-793X&rft_id=info:doi/10.1177/0021998316649782&rft_dat=%3Csage_cross%3E10.1177_0021998316649782%3C/sage_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-bcbd08027c9fc399df4c49cf9b49294ef3e13579988f44dab89074f5ad4317d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_0021998316649782&rfr_iscdi=true