Loading…
Micromechanical modeling of 8-harness satin weave glass fiber-reinforced composites
This study introduces a unit cell-based finite element micromechanical model that accounts for correct post cure fabric geometry, in situ material properties and void content within the composite to accurately predict the effective elastic orthotropic properties of 8-harness satin weave glass fiber-...
Saved in:
Published in: | Journal of composite materials 2017-03, Vol.51 (5), p.705-720 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c323t-bcbd08027c9fc399df4c49cf9b49294ef3e13579988f44dab89074f5ad4317d43 |
---|---|
cites | cdi_FETCH-LOGICAL-c323t-bcbd08027c9fc399df4c49cf9b49294ef3e13579988f44dab89074f5ad4317d43 |
container_end_page | 720 |
container_issue | 5 |
container_start_page | 705 |
container_title | Journal of composite materials |
container_volume | 51 |
creator | Choudhry, RS Khan, Kamran A Khan, Sohaib Z Khan, Muhammad A Hassan, Abid |
description | This study introduces a unit cell-based finite element micromechanical model that accounts for correct post cure fabric geometry, in situ material properties and void content within the composite to accurately predict the effective elastic orthotropic properties of 8-harness satin weave glass fiber-reinforced phenolic composites. The micromechanical model utilizes a correct post cure internal architecture of weave, which was obtained through X-ray microtomography tests. Moreover, it utilizes an analytical expression to update the input material properties to account for in situ effects of resin distribution within yarn (the yarn volume fraction) and void content on yarn and matrix properties. This is generally not considered in modeling approaches available in literature and in particular, it has not been demonstrated before for finite element micromechanics models of 8-harness satin weave composites. The unit cell method is used to obtain the effective responses by applying periodic boundary conditions. The outcome of the analysis based on the proposed model is validated through experiments. After validation, the micromechanical model was further utilized to predict the unknown effective properties of the same composite. |
doi_str_mv | 10.1177/0021998316649782 |
format | article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_0021998316649782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0021998316649782</sage_id><sourcerecordid>10.1177_0021998316649782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-bcbd08027c9fc399df4c49cf9b49294ef3e13579988f44dab89074f5ad4317d43</originalsourceid><addsrcrecordid>eNp1UE1LxDAUDKJgXb17zB-IJk3aNEdZ_IIVDyp4K2ny0s3SJktSFf-9LetJ8PIevJl5zAxCl4xeMSblNaUlU6rhrK6Fkk15hApWcUqk4u_HqFhgsuCn6CznHaVUMlEX6OXJmxRHMFsdvNEDHqOFwYceR4cbstUpQM4468kH_AX6E3A_6PnifAeJJPDBxWTAYhPHfcx-gnyOTpweMlz87hV6u7t9XT-QzfP94_pmQwwv-UQ601na0FIa5QxXyjphhDJOdUKVSoDjwHglZ9ONE8LqrlFUCldpKziT81ghevg7J8g5gWv3yY86fbeMtksp7d9SZgk5SLLuod3FjxRmh__zfwDa8mKZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Micromechanical modeling of 8-harness satin weave glass fiber-reinforced composites</title><source>Sage Journals Online</source><creator>Choudhry, RS ; Khan, Kamran A ; Khan, Sohaib Z ; Khan, Muhammad A ; Hassan, Abid</creator><creatorcontrib>Choudhry, RS ; Khan, Kamran A ; Khan, Sohaib Z ; Khan, Muhammad A ; Hassan, Abid</creatorcontrib><description>This study introduces a unit cell-based finite element micromechanical model that accounts for correct post cure fabric geometry, in situ material properties and void content within the composite to accurately predict the effective elastic orthotropic properties of 8-harness satin weave glass fiber-reinforced phenolic composites. The micromechanical model utilizes a correct post cure internal architecture of weave, which was obtained through X-ray microtomography tests. Moreover, it utilizes an analytical expression to update the input material properties to account for in situ effects of resin distribution within yarn (the yarn volume fraction) and void content on yarn and matrix properties. This is generally not considered in modeling approaches available in literature and in particular, it has not been demonstrated before for finite element micromechanics models of 8-harness satin weave composites. The unit cell method is used to obtain the effective responses by applying periodic boundary conditions. The outcome of the analysis based on the proposed model is validated through experiments. After validation, the micromechanical model was further utilized to predict the unknown effective properties of the same composite.</description><identifier>ISSN: 0021-9983</identifier><identifier>EISSN: 1530-793X</identifier><identifier>DOI: 10.1177/0021998316649782</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Journal of composite materials, 2017-03, Vol.51 (5), p.705-720</ispartof><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-bcbd08027c9fc399df4c49cf9b49294ef3e13579988f44dab89074f5ad4317d43</citedby><cites>FETCH-LOGICAL-c323t-bcbd08027c9fc399df4c49cf9b49294ef3e13579988f44dab89074f5ad4317d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids></links><search><creatorcontrib>Choudhry, RS</creatorcontrib><creatorcontrib>Khan, Kamran A</creatorcontrib><creatorcontrib>Khan, Sohaib Z</creatorcontrib><creatorcontrib>Khan, Muhammad A</creatorcontrib><creatorcontrib>Hassan, Abid</creatorcontrib><title>Micromechanical modeling of 8-harness satin weave glass fiber-reinforced composites</title><title>Journal of composite materials</title><description>This study introduces a unit cell-based finite element micromechanical model that accounts for correct post cure fabric geometry, in situ material properties and void content within the composite to accurately predict the effective elastic orthotropic properties of 8-harness satin weave glass fiber-reinforced phenolic composites. The micromechanical model utilizes a correct post cure internal architecture of weave, which was obtained through X-ray microtomography tests. Moreover, it utilizes an analytical expression to update the input material properties to account for in situ effects of resin distribution within yarn (the yarn volume fraction) and void content on yarn and matrix properties. This is generally not considered in modeling approaches available in literature and in particular, it has not been demonstrated before for finite element micromechanics models of 8-harness satin weave composites. The unit cell method is used to obtain the effective responses by applying periodic boundary conditions. The outcome of the analysis based on the proposed model is validated through experiments. After validation, the micromechanical model was further utilized to predict the unknown effective properties of the same composite.</description><issn>0021-9983</issn><issn>1530-793X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAUDKJgXb17zB-IJk3aNEdZ_IIVDyp4K2ny0s3SJktSFf-9LetJ8PIevJl5zAxCl4xeMSblNaUlU6rhrK6Fkk15hApWcUqk4u_HqFhgsuCn6CznHaVUMlEX6OXJmxRHMFsdvNEDHqOFwYceR4cbstUpQM4468kH_AX6E3A_6PnifAeJJPDBxWTAYhPHfcx-gnyOTpweMlz87hV6u7t9XT-QzfP94_pmQwwv-UQ601na0FIa5QxXyjphhDJOdUKVSoDjwHglZ9ONE8LqrlFUCldpKziT81ghevg7J8g5gWv3yY86fbeMtksp7d9SZgk5SLLuod3FjxRmh__zfwDa8mKZ</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Choudhry, RS</creator><creator>Khan, Kamran A</creator><creator>Khan, Sohaib Z</creator><creator>Khan, Muhammad A</creator><creator>Hassan, Abid</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201703</creationdate><title>Micromechanical modeling of 8-harness satin weave glass fiber-reinforced composites</title><author>Choudhry, RS ; Khan, Kamran A ; Khan, Sohaib Z ; Khan, Muhammad A ; Hassan, Abid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-bcbd08027c9fc399df4c49cf9b49294ef3e13579988f44dab89074f5ad4317d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choudhry, RS</creatorcontrib><creatorcontrib>Khan, Kamran A</creatorcontrib><creatorcontrib>Khan, Sohaib Z</creatorcontrib><creatorcontrib>Khan, Muhammad A</creatorcontrib><creatorcontrib>Hassan, Abid</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choudhry, RS</au><au>Khan, Kamran A</au><au>Khan, Sohaib Z</au><au>Khan, Muhammad A</au><au>Hassan, Abid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromechanical modeling of 8-harness satin weave glass fiber-reinforced composites</atitle><jtitle>Journal of composite materials</jtitle><date>2017-03</date><risdate>2017</risdate><volume>51</volume><issue>5</issue><spage>705</spage><epage>720</epage><pages>705-720</pages><issn>0021-9983</issn><eissn>1530-793X</eissn><abstract>This study introduces a unit cell-based finite element micromechanical model that accounts for correct post cure fabric geometry, in situ material properties and void content within the composite to accurately predict the effective elastic orthotropic properties of 8-harness satin weave glass fiber-reinforced phenolic composites. The micromechanical model utilizes a correct post cure internal architecture of weave, which was obtained through X-ray microtomography tests. Moreover, it utilizes an analytical expression to update the input material properties to account for in situ effects of resin distribution within yarn (the yarn volume fraction) and void content on yarn and matrix properties. This is generally not considered in modeling approaches available in literature and in particular, it has not been demonstrated before for finite element micromechanics models of 8-harness satin weave composites. The unit cell method is used to obtain the effective responses by applying periodic boundary conditions. The outcome of the analysis based on the proposed model is validated through experiments. After validation, the micromechanical model was further utilized to predict the unknown effective properties of the same composite.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0021998316649782</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9983 |
ispartof | Journal of composite materials, 2017-03, Vol.51 (5), p.705-720 |
issn | 0021-9983 1530-793X |
language | eng |
recordid | cdi_crossref_primary_10_1177_0021998316649782 |
source | Sage Journals Online |
title | Micromechanical modeling of 8-harness satin weave glass fiber-reinforced composites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromechanical%20modeling%20of%208-harness%20satin%20weave%20glass%20fiber-reinforced%20composites&rft.jtitle=Journal%20of%20composite%20materials&rft.au=Choudhry,%20RS&rft.date=2017-03&rft.volume=51&rft.issue=5&rft.spage=705&rft.epage=720&rft.pages=705-720&rft.issn=0021-9983&rft.eissn=1530-793X&rft_id=info:doi/10.1177/0021998316649782&rft_dat=%3Csage_cross%3E10.1177_0021998316649782%3C/sage_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-bcbd08027c9fc399df4c49cf9b49294ef3e13579988f44dab89074f5ad4317d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_0021998316649782&rfr_iscdi=true |