Loading…
Complementarity framework formulation from bond graphs to model a class of nonlinear systems and hybrid systems with fixed causality
A systematic method for constructing models in the complementarity framework from a bond graph is proposed. Bond graphs with and without storage elements in derivative causality are considered. The proposed method allows the study of switching systems represented by a bond graph model of fixed causa...
Saved in:
Published in: | Simulation (San Diego, Calif.) Calif.), 2018-09, Vol.94 (9), p.783-795 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A systematic method for constructing models in the complementarity framework from a bond graph is proposed. Bond graphs with and without storage elements in derivative causality are considered. The proposed method allows the study of switching systems represented by a bond graph model of fixed causality. The proposed methodology allows the complementarity framework to be exploited in different engineering areas by using bond graphs.
The idea of representing a unidirectional switch with a model that is essentially the same as a diode is presented. By employing a similar representation for diodes and switches, the modeling and simulation of power switching converters are simplified and become more intuitive. Two application examples are shown. A non-inverting buck-boost converter and a zeta converter with an element in derivative causality are simulated. |
---|---|
ISSN: | 0037-5497 1741-3133 |
DOI: | 10.1177/0037549717751288 |