Loading…
Genetic ablation of smooth muscle K IR 2.1 is inconsequential to the function of mouse cerebral arteries
Cerebral blood flow is a finely tuned process dependent on coordinated changes in arterial tone. These changes are strongly tied to smooth muscle membrane potential and inwardly rectifying K (K ) channels are thought to be a key determinant. To elucidate the role of K 2.1 in cerebral arterial tone d...
Saved in:
Published in: | Journal of cerebral blood flow and metabolism 2022-09, Vol.42 (9), p.271678X221093432-1706 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1138-890958bf48cfeccc367b4655034b587a7961327a9aba5dcb39735c00807f4503 |
---|---|
cites | cdi_FETCH-LOGICAL-c1138-890958bf48cfeccc367b4655034b587a7961327a9aba5dcb39735c00807f4503 |
container_end_page | 1706 |
container_issue | 9 |
container_start_page | 271678X221093432 |
container_title | Journal of cerebral blood flow and metabolism |
container_volume | 42 |
creator | Kowalewska, Paulina M Fletcher, Jacob Jackson, William F Brett, Suzanne E Kim, Michelle SM Mironova, Galina Yu Haghbin, Nadia Richter, David M Tykocki, Nathan R Nelson, Mark T Welsh, Donald G |
description | Cerebral blood flow is a finely tuned process dependent on coordinated changes in arterial tone. These changes are strongly tied to smooth muscle membrane potential and inwardly rectifying K
(K
) channels are thought to be a key determinant. To elucidate the role of K
2.1 in cerebral arterial tone development, this study examined the electrical and functional properties of cells, vessels and living tissue from tamoxifen-induced smooth muscle cell (SMC)-specific K
2.1 knockout mice. Patch-clamp electrophysiology revealed a robust Ba
-sensitive inwardly rectifying K
current in cerebral arterial myocytes irrespective of K
2.1 knockout. Immunolabeling clarified that K
2.1 expression was low in SMCs while K
2.2 labeling was remarkably abundant at the membrane. In alignment with these observations, pressure myography revealed that the myogenic response and K
-induced dilation were intact in cerebral arteries post knockout. At the whole organ level, this translated to a maintenance of brain perfusion in SMC
mice, as assessed with arterial spin-labeling MRI. We confirmed these findings in superior epigastric arteries and implicated K
2.2 as more functionally relevant in SMCs. Together, these results suggest that subunits other than K
2.1 play a significant role in setting native current in SMCs and driving arterial tone. |
doi_str_mv | 10.1177/0271678X221093432 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_0271678X221093432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35410518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1138-890958bf48cfeccc367b4655034b587a7961327a9aba5dcb39735c00807f4503</originalsourceid><addsrcrecordid>eNplkLFOwzAQQC0EoqXwASzIP5Dii-PYHlEFpaISEurAFtnuRTVK4mInA39PqrYsTDfceyfdI-Qe2BxAykeWSyil-sxzYJoXPL8gUxBCZ5JBeUmmh312ACbkJqUvxpjiQlyTCRcFMAFqSnZL7LD3jhrbmN6HjoaapjaEfkfbIbkG6RtdfdB8DtQn6jsXuoTfA3a9Nw3tA-13SOuhc2e5DUNC6jCijSNhYo_RY7olV7VpEt6d5oxsXp43i9ds_b5cLZ7WmQPgKlOaaaFsXShXo3OOl9IWpRCMF1YoaaQugefSaGON2DrLteTCjY8xWRcjNSNwPOtiSCliXe2jb038qYBVh2jVv2ij83B09oNtcftnnCvxX80qZsc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Genetic ablation of smooth muscle K IR 2.1 is inconsequential to the function of mouse cerebral arteries</title><source>PubMed Central</source><source>SAGE</source><creator>Kowalewska, Paulina M ; Fletcher, Jacob ; Jackson, William F ; Brett, Suzanne E ; Kim, Michelle SM ; Mironova, Galina Yu ; Haghbin, Nadia ; Richter, David M ; Tykocki, Nathan R ; Nelson, Mark T ; Welsh, Donald G</creator><creatorcontrib>Kowalewska, Paulina M ; Fletcher, Jacob ; Jackson, William F ; Brett, Suzanne E ; Kim, Michelle SM ; Mironova, Galina Yu ; Haghbin, Nadia ; Richter, David M ; Tykocki, Nathan R ; Nelson, Mark T ; Welsh, Donald G</creatorcontrib><description>Cerebral blood flow is a finely tuned process dependent on coordinated changes in arterial tone. These changes are strongly tied to smooth muscle membrane potential and inwardly rectifying K
(K
) channels are thought to be a key determinant. To elucidate the role of K
2.1 in cerebral arterial tone development, this study examined the electrical and functional properties of cells, vessels and living tissue from tamoxifen-induced smooth muscle cell (SMC)-specific K
2.1 knockout mice. Patch-clamp electrophysiology revealed a robust Ba
-sensitive inwardly rectifying K
current in cerebral arterial myocytes irrespective of K
2.1 knockout. Immunolabeling clarified that K
2.1 expression was low in SMCs while K
2.2 labeling was remarkably abundant at the membrane. In alignment with these observations, pressure myography revealed that the myogenic response and K
-induced dilation were intact in cerebral arteries post knockout. At the whole organ level, this translated to a maintenance of brain perfusion in SMC
mice, as assessed with arterial spin-labeling MRI. We confirmed these findings in superior epigastric arteries and implicated K
2.2 as more functionally relevant in SMCs. Together, these results suggest that subunits other than K
2.1 play a significant role in setting native current in SMCs and driving arterial tone.</description><identifier>ISSN: 0271-678X</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1177/0271678X221093432</identifier><identifier>PMID: 35410518</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of cerebral blood flow and metabolism, 2022-09, Vol.42 (9), p.271678X221093432-1706</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1138-890958bf48cfeccc367b4655034b587a7961327a9aba5dcb39735c00807f4503</citedby><cites>FETCH-LOGICAL-c1138-890958bf48cfeccc367b4655034b587a7961327a9aba5dcb39735c00807f4503</cites><orcidid>0000-0001-5432-7656 ; 0000-0003-3231-3020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35410518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kowalewska, Paulina M</creatorcontrib><creatorcontrib>Fletcher, Jacob</creatorcontrib><creatorcontrib>Jackson, William F</creatorcontrib><creatorcontrib>Brett, Suzanne E</creatorcontrib><creatorcontrib>Kim, Michelle SM</creatorcontrib><creatorcontrib>Mironova, Galina Yu</creatorcontrib><creatorcontrib>Haghbin, Nadia</creatorcontrib><creatorcontrib>Richter, David M</creatorcontrib><creatorcontrib>Tykocki, Nathan R</creatorcontrib><creatorcontrib>Nelson, Mark T</creatorcontrib><creatorcontrib>Welsh, Donald G</creatorcontrib><title>Genetic ablation of smooth muscle K IR 2.1 is inconsequential to the function of mouse cerebral arteries</title><title>Journal of cerebral blood flow and metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>Cerebral blood flow is a finely tuned process dependent on coordinated changes in arterial tone. These changes are strongly tied to smooth muscle membrane potential and inwardly rectifying K
(K
) channels are thought to be a key determinant. To elucidate the role of K
2.1 in cerebral arterial tone development, this study examined the electrical and functional properties of cells, vessels and living tissue from tamoxifen-induced smooth muscle cell (SMC)-specific K
2.1 knockout mice. Patch-clamp electrophysiology revealed a robust Ba
-sensitive inwardly rectifying K
current in cerebral arterial myocytes irrespective of K
2.1 knockout. Immunolabeling clarified that K
2.1 expression was low in SMCs while K
2.2 labeling was remarkably abundant at the membrane. In alignment with these observations, pressure myography revealed that the myogenic response and K
-induced dilation were intact in cerebral arteries post knockout. At the whole organ level, this translated to a maintenance of brain perfusion in SMC
mice, as assessed with arterial spin-labeling MRI. We confirmed these findings in superior epigastric arteries and implicated K
2.2 as more functionally relevant in SMCs. Together, these results suggest that subunits other than K
2.1 play a significant role in setting native current in SMCs and driving arterial tone.</description><issn>0271-678X</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNplkLFOwzAQQC0EoqXwASzIP5Dii-PYHlEFpaISEurAFtnuRTVK4mInA39PqrYsTDfceyfdI-Qe2BxAykeWSyil-sxzYJoXPL8gUxBCZ5JBeUmmh312ACbkJqUvxpjiQlyTCRcFMAFqSnZL7LD3jhrbmN6HjoaapjaEfkfbIbkG6RtdfdB8DtQn6jsXuoTfA3a9Nw3tA-13SOuhc2e5DUNC6jCijSNhYo_RY7olV7VpEt6d5oxsXp43i9ds_b5cLZ7WmQPgKlOaaaFsXShXo3OOl9IWpRCMF1YoaaQugefSaGON2DrLteTCjY8xWRcjNSNwPOtiSCliXe2jb038qYBVh2jVv2ij83B09oNtcftnnCvxX80qZsc</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Kowalewska, Paulina M</creator><creator>Fletcher, Jacob</creator><creator>Jackson, William F</creator><creator>Brett, Suzanne E</creator><creator>Kim, Michelle SM</creator><creator>Mironova, Galina Yu</creator><creator>Haghbin, Nadia</creator><creator>Richter, David M</creator><creator>Tykocki, Nathan R</creator><creator>Nelson, Mark T</creator><creator>Welsh, Donald G</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5432-7656</orcidid><orcidid>https://orcid.org/0000-0003-3231-3020</orcidid></search><sort><creationdate>202209</creationdate><title>Genetic ablation of smooth muscle K IR 2.1 is inconsequential to the function of mouse cerebral arteries</title><author>Kowalewska, Paulina M ; Fletcher, Jacob ; Jackson, William F ; Brett, Suzanne E ; Kim, Michelle SM ; Mironova, Galina Yu ; Haghbin, Nadia ; Richter, David M ; Tykocki, Nathan R ; Nelson, Mark T ; Welsh, Donald G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1138-890958bf48cfeccc367b4655034b587a7961327a9aba5dcb39735c00807f4503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kowalewska, Paulina M</creatorcontrib><creatorcontrib>Fletcher, Jacob</creatorcontrib><creatorcontrib>Jackson, William F</creatorcontrib><creatorcontrib>Brett, Suzanne E</creatorcontrib><creatorcontrib>Kim, Michelle SM</creatorcontrib><creatorcontrib>Mironova, Galina Yu</creatorcontrib><creatorcontrib>Haghbin, Nadia</creatorcontrib><creatorcontrib>Richter, David M</creatorcontrib><creatorcontrib>Tykocki, Nathan R</creatorcontrib><creatorcontrib>Nelson, Mark T</creatorcontrib><creatorcontrib>Welsh, Donald G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of cerebral blood flow and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kowalewska, Paulina M</au><au>Fletcher, Jacob</au><au>Jackson, William F</au><au>Brett, Suzanne E</au><au>Kim, Michelle SM</au><au>Mironova, Galina Yu</au><au>Haghbin, Nadia</au><au>Richter, David M</au><au>Tykocki, Nathan R</au><au>Nelson, Mark T</au><au>Welsh, Donald G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic ablation of smooth muscle K IR 2.1 is inconsequential to the function of mouse cerebral arteries</atitle><jtitle>Journal of cerebral blood flow and metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2022-09</date><risdate>2022</risdate><volume>42</volume><issue>9</issue><spage>271678X221093432</spage><epage>1706</epage><pages>271678X221093432-1706</pages><issn>0271-678X</issn><eissn>1559-7016</eissn><abstract>Cerebral blood flow is a finely tuned process dependent on coordinated changes in arterial tone. These changes are strongly tied to smooth muscle membrane potential and inwardly rectifying K
(K
) channels are thought to be a key determinant. To elucidate the role of K
2.1 in cerebral arterial tone development, this study examined the electrical and functional properties of cells, vessels and living tissue from tamoxifen-induced smooth muscle cell (SMC)-specific K
2.1 knockout mice. Patch-clamp electrophysiology revealed a robust Ba
-sensitive inwardly rectifying K
current in cerebral arterial myocytes irrespective of K
2.1 knockout. Immunolabeling clarified that K
2.1 expression was low in SMCs while K
2.2 labeling was remarkably abundant at the membrane. In alignment with these observations, pressure myography revealed that the myogenic response and K
-induced dilation were intact in cerebral arteries post knockout. At the whole organ level, this translated to a maintenance of brain perfusion in SMC
mice, as assessed with arterial spin-labeling MRI. We confirmed these findings in superior epigastric arteries and implicated K
2.2 as more functionally relevant in SMCs. Together, these results suggest that subunits other than K
2.1 play a significant role in setting native current in SMCs and driving arterial tone.</abstract><cop>United States</cop><pmid>35410518</pmid><doi>10.1177/0271678X221093432</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5432-7656</orcidid><orcidid>https://orcid.org/0000-0003-3231-3020</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-678X |
ispartof | Journal of cerebral blood flow and metabolism, 2022-09, Vol.42 (9), p.271678X221093432-1706 |
issn | 0271-678X 1559-7016 |
language | eng |
recordid | cdi_crossref_primary_10_1177_0271678X221093432 |
source | PubMed Central; SAGE |
title | Genetic ablation of smooth muscle K IR 2.1 is inconsequential to the function of mouse cerebral arteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20ablation%20of%20smooth%20muscle%20K%20IR%202.1%20is%20inconsequential%20to%20the%20function%20of%20mouse%20cerebral%20arteries&rft.jtitle=Journal%20of%20cerebral%20blood%20flow%20and%20metabolism&rft.au=Kowalewska,%20Paulina%20M&rft.date=2022-09&rft.volume=42&rft.issue=9&rft.spage=271678X221093432&rft.epage=1706&rft.pages=271678X221093432-1706&rft.issn=0271-678X&rft.eissn=1559-7016&rft_id=info:doi/10.1177/0271678X221093432&rft_dat=%3Cpubmed_cross%3E35410518%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1138-890958bf48cfeccc367b4655034b587a7961327a9aba5dcb39735c00807f4503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/35410518&rfr_iscdi=true |