Loading…
Catastrophe Analysis of the Planar Two-Spring Mechanism
A stability analysis is performed for the planar two-spring system using catastrophe theory. Basic elements of catastrophe theory are outlined and applied to the two-spring system to give catastrophe locus plots showing where a change in stability occurs. The method used for the two-spring yields a...
Saved in:
Published in: | The International journal of robotics research 1998-01, Vol.17 (1), p.89-101 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c285t-5ebc998118df516c5db3e312d06135c086d85240fb0b01cd5ed63c5e7906e1b33 |
---|---|
cites | cdi_FETCH-LOGICAL-c285t-5ebc998118df516c5db3e312d06135c086d85240fb0b01cd5ed63c5e7906e1b33 |
container_end_page | 101 |
container_issue | 1 |
container_start_page | 89 |
container_title | The International journal of robotics research |
container_volume | 17 |
creator | Hines, R. Marsh, D. Duffy, J. |
description | A stability analysis is performed for the planar two-spring system using catastrophe theory. Basic elements of catastrophe theory are outlined and applied to the two-spring system to give catastrophe locus plots showing where a change in stability occurs. The method used for the two-spring yields a stability analysis without having to solve the inverse analysis. The inverse analysis for the two-spring system is used to illustrate system equilibrium positions before, dur ing, and after a change in stability. |
doi_str_mv | 10.1177/027836499801700108 |
format | article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_027836499801700108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_027836499801700108</sage_id><sourcerecordid>10.1177_027836499801700108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-5ebc998118df516c5db3e312d06135c086d85240fb0b01cd5ed63c5e7906e1b33</originalsourceid><addsrcrecordid>eNp9j91Kw0AQhRdRMFZfwKu8wNqZbPYnl6X4U6goWK_DZnfTpqRJ2YlI396Eeid4NQyc73A-xu4RHhC1nkOmjVB5URhADYBgLliCOkcuUKtLlkwBPiWu2Q3RHgCEgiJhemkHS0Psj7uQLjrbnqihtK_TYfzfW9vZmG6-e_5xjE23TV-D29muocMtu6ptS-Hu987Y59PjZvnC12_Pq-VizV1m5MBlqNw4CtH4WqJy0lciCMw8KBTSgVHeyCyHuoIK0HkZvBJOBl2AClgJMWPZudfFniiGuhyHHGw8lQjlpF7-VR-h-Rkiuw3lvv-Koxj9R_wARlVYFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Catastrophe Analysis of the Planar Two-Spring Mechanism</title><source>SAGE Complete Deep Backfile Purchase 2012</source><creator>Hines, R. ; Marsh, D. ; Duffy, J.</creator><creatorcontrib>Hines, R. ; Marsh, D. ; Duffy, J.</creatorcontrib><description>A stability analysis is performed for the planar two-spring system using catastrophe theory. Basic elements of catastrophe theory are outlined and applied to the two-spring system to give catastrophe locus plots showing where a change in stability occurs. The method used for the two-spring yields a stability analysis without having to solve the inverse analysis. The inverse analysis for the two-spring system is used to illustrate system equilibrium positions before, dur ing, and after a change in stability.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/027836499801700108</identifier><language>eng</language><publisher>Thousand Oaks, CA: Sage Publications</publisher><ispartof>The International journal of robotics research, 1998-01, Vol.17 (1), p.89-101</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-5ebc998118df516c5db3e312d06135c086d85240fb0b01cd5ed63c5e7906e1b33</citedby><cites>FETCH-LOGICAL-c285t-5ebc998118df516c5db3e312d06135c086d85240fb0b01cd5ed63c5e7906e1b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/027836499801700108$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/027836499801700108$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,21826,27905,27906,45063,45451</link.rule.ids></links><search><creatorcontrib>Hines, R.</creatorcontrib><creatorcontrib>Marsh, D.</creatorcontrib><creatorcontrib>Duffy, J.</creatorcontrib><title>Catastrophe Analysis of the Planar Two-Spring Mechanism</title><title>The International journal of robotics research</title><description>A stability analysis is performed for the planar two-spring system using catastrophe theory. Basic elements of catastrophe theory are outlined and applied to the two-spring system to give catastrophe locus plots showing where a change in stability occurs. The method used for the two-spring yields a stability analysis without having to solve the inverse analysis. The inverse analysis for the two-spring system is used to illustrate system equilibrium positions before, dur ing, and after a change in stability.</description><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp9j91Kw0AQhRdRMFZfwKu8wNqZbPYnl6X4U6goWK_DZnfTpqRJ2YlI396Eeid4NQyc73A-xu4RHhC1nkOmjVB5URhADYBgLliCOkcuUKtLlkwBPiWu2Q3RHgCEgiJhemkHS0Psj7uQLjrbnqihtK_TYfzfW9vZmG6-e_5xjE23TV-D29muocMtu6ptS-Hu987Y59PjZvnC12_Pq-VizV1m5MBlqNw4CtH4WqJy0lciCMw8KBTSgVHeyCyHuoIK0HkZvBJOBl2AClgJMWPZudfFniiGuhyHHGw8lQjlpF7-VR-h-Rkiuw3lvv-Koxj9R_wARlVYFw</recordid><startdate>199801</startdate><enddate>199801</enddate><creator>Hines, R.</creator><creator>Marsh, D.</creator><creator>Duffy, J.</creator><general>Sage Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199801</creationdate><title>Catastrophe Analysis of the Planar Two-Spring Mechanism</title><author>Hines, R. ; Marsh, D. ; Duffy, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-5ebc998118df516c5db3e312d06135c086d85240fb0b01cd5ed63c5e7906e1b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hines, R.</creatorcontrib><creatorcontrib>Marsh, D.</creatorcontrib><creatorcontrib>Duffy, J.</creatorcontrib><collection>CrossRef</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hines, R.</au><au>Marsh, D.</au><au>Duffy, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catastrophe Analysis of the Planar Two-Spring Mechanism</atitle><jtitle>The International journal of robotics research</jtitle><date>1998-01</date><risdate>1998</risdate><volume>17</volume><issue>1</issue><spage>89</spage><epage>101</epage><pages>89-101</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><abstract>A stability analysis is performed for the planar two-spring system using catastrophe theory. Basic elements of catastrophe theory are outlined and applied to the two-spring system to give catastrophe locus plots showing where a change in stability occurs. The method used for the two-spring yields a stability analysis without having to solve the inverse analysis. The inverse analysis for the two-spring system is used to illustrate system equilibrium positions before, dur ing, and after a change in stability.</abstract><cop>Thousand Oaks, CA</cop><pub>Sage Publications</pub><doi>10.1177/027836499801700108</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-3649 |
ispartof | The International journal of robotics research, 1998-01, Vol.17 (1), p.89-101 |
issn | 0278-3649 1741-3176 |
language | eng |
recordid | cdi_crossref_primary_10_1177_027836499801700108 |
source | SAGE Complete Deep Backfile Purchase 2012 |
title | Catastrophe Analysis of the Planar Two-Spring Mechanism |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A36%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catastrophe%20Analysis%20of%20the%20Planar%20Two-Spring%20Mechanism&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Hines,%20R.&rft.date=1998-01&rft.volume=17&rft.issue=1&rft.spage=89&rft.epage=101&rft.pages=89-101&rft.issn=0278-3649&rft.eissn=1741-3176&rft_id=info:doi/10.1177/027836499801700108&rft_dat=%3Csage_cross%3E10.1177_027836499801700108%3C/sage_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-5ebc998118df516c5db3e312d06135c086d85240fb0b01cd5ed63c5e7906e1b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_027836499801700108&rfr_iscdi=true |