Loading…

Mechanical properties of CNT–Bisphenol E cyanate ester-based CFRP nanocomposite developed through VARTM process

This paper reports on the effect of multiwall carbon nanotubes (CNTs) without and with chemical functionalization on the mechanical properties of Bisphenol E cyanate ester resin (BECy) based carbon fibre reinforced plastic (CFRP) laminated composites. BECy with its low viscosity, low moisture uptake...

Full description

Saved in:
Bibliographic Details
Published in:Journal of reinforced plastics and composites 2015-06, Vol.34 (12), p.1000-1014
Main Authors: Subba Rao, P, Renji, K, Bhat, MR, Mahapatra, D Roy, Narayana Naik, G
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper reports on the effect of multiwall carbon nanotubes (CNTs) without and with chemical functionalization on the mechanical properties of Bisphenol E cyanate ester resin (BECy) based carbon fibre reinforced plastic (CFRP) laminated composites. BECy with its low viscosity, low moisture uptake and superior mechanical properties is selected for its application in CFRP laminates through the cost-effective Vacuum Assisted Resin Transfer Moulding (VARTM) process. However, unlike CNT–epoxy–CFRP composites, processing and performance issues such as dispersion of CNTs, chemical bonding with resin, functionalization effects, effects on mechanical properties, etc. for BECy–CNT–CFRP composite system are not well reported. The objective of this study is to improve the mechanical properties of BECy resin with small additions of CNTs and functionalized CNTs in CFRP laminates. CNTs and fCNTs are infused into BECy using ultrasonication and standard mixing methods. Improvements in Young’s modulus and strength in tension, compression, shear, flexure and interlaminar shear strength are analysed. It is observed that addition of 0.5 wt% CNTs effected for maximum mechanical properties of the resin and 1 wt% CNTs for the mechanical properties of CNT–CFRP nanocomposite. Further, improvements obtained with fCNTs are marginal. Dispersion behaviour and effect of CNTs/fCNTs in load transfer corroborated with SEM pictures are presented. The enhanced mechanical properties realized in VARTM processing of BECy-CFRP laminate indicate clear advantage of CNT based modification of the process.
ISSN:0731-6844
1530-7964
DOI:10.1177/0731684415585382