Loading…

Compressive load, thermal and acoustic properties of wood/polyvinyl chloride composite log-wall panels

The cross-section design of wood/polyvinyl chloride composite log-wall panels was studied for effects on compressive load, thermal and acoustic properties. Variation in the slenderness ratio (2, 4, 8, 10 and 12) on compressive load was also included. Two parameters of log-wall cross sections consist...

Full description

Saved in:
Bibliographic Details
Published in:Journal of reinforced plastics and composites 2017-08, Vol.36 (16), p.1183-1193
Main Authors: Pulngern, T, Eakintumas, W, Rosarpitak, V, Sombatsompop, N
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The cross-section design of wood/polyvinyl chloride composite log-wall panels was studied for effects on compressive load, thermal and acoustic properties. Variation in the slenderness ratio (2, 4, 8, 10 and 12) on compressive load was also included. Two parameters of log-wall cross sections consisting of web thickness (3.5, 7.0 and 10.0 mm) and flange spacing (45, 60 and 90 mm) were also investigated. Experimental results indicated that higher web thickness and lower flange spacing of wood/polyvinyl chloride composite log-wall cross sections increased the ultimate compressive load and noise reduction. However, lateral deflection and thermal resistance decreased. Increasing the slenderness ratio of the log-wall panels resulted in lower ultimate compressive load and higher lateral deflection. Empirical equations for predicting the ultimate compressive load of wood/polyvinyl chloride composite log-wall panels in practical uses were proposed regarding web thickness, flange spacing and slenderness ratio.
ISSN:0731-6844
1530-7964
DOI:10.1177/0731684417699712