Loading…

Strain self-sensing capability of a tidal turbine blade fabricated of PU-foam/glass fiber/epoxy composites using MWCNTs

A novel marine composite structure (experimental tidal turbine blade) made up of a polyurethane (PU) foam/glass fiber/epoxy resin composite with multiwall carbon nanotubes (MWCNTs) is proposed herein to self-sense its strain under a structural test scenario. To achieve this, MWCNTs were deposited on...

Full description

Saved in:
Bibliographic Details
Published in:Journal of reinforced plastics and composites 2023-04, Vol.42 (7-8), p.363-376
Main Authors: Rubio-González, Carlos, José-Trujillo, Eduardo, Alejandro Rodríguez-González, Julio, Espinoza-Hernández, Jaime, Manzo-Preciado, José Alfredo
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c247t-4bfec4da527a1908e7223dc7879a4635ebd98e22bef9464b3ae5e963daf6ce953
cites cdi_FETCH-LOGICAL-c247t-4bfec4da527a1908e7223dc7879a4635ebd98e22bef9464b3ae5e963daf6ce953
container_end_page 376
container_issue 7-8
container_start_page 363
container_title Journal of reinforced plastics and composites
container_volume 42
creator Rubio-González, Carlos
José-Trujillo, Eduardo
Alejandro Rodríguez-González, Julio
Espinoza-Hernández, Jaime
Manzo-Preciado, José Alfredo
description A novel marine composite structure (experimental tidal turbine blade) made up of a polyurethane (PU) foam/glass fiber/epoxy resin composite with multiwall carbon nanotubes (MWCNTs) is proposed herein to self-sense its strain under a structural test scenario. To achieve this, MWCNTs were deposited onto glass fiber fabric by spray-coating technique in order to form an effective electrical percolation network onto the external skin surface of the tidal turbine blade which enables piezoresistive capability. After MWCNT deposition, the blade was manufactured by means of one-shot resin transfer molding (RTM) in a closed and heated metallic mold specially designed with a blade geometry of 67 cm length. The results confirm that the spray coating technique is a viable method to deposit MWCNTs onto glass fiber surface and form electrical networks into the blade at a relatively low MWCNT concentration. Finite element analysis (FEA) predicted a suitable structural blade design with a maximum failure index value of 0.9 attained in the blade shear web. The measured longitudinal strains of the tidal turbine blade were in good agreement with the numerical strain values predicted with FEA. Electromechanical tests carried out on a structural test rig designed and instrumented for tidal turbine blades showed that the electrical resistance change response of carbon nanotube (CNT) network integrated into the blade was capable of following the mechanical curve response up to the blade limit load, confirming its ability to self-sense its strain in real time.
doi_str_mv 10.1177/07316844221127637
format article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_07316844221127637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_07316844221127637</sage_id><sourcerecordid>10.1177_07316844221127637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-4bfec4da527a1908e7223dc7879a4635ebd98e22bef9464b3ae5e963daf6ce953</originalsourceid><addsrcrecordid>eNp9kMtOwzAURC0EEqXwAez8A2njR-xkiSpeUnlItGIZXTvXlas0juxU0L-nAXZIrGYxc0ajIeSa5TPGtJ7nWjBVSsk5Y1wroU_IhBUiz3Sl5CmZjH42Bs7JRUrbPOdMSjkhH29DBN_RhK3LEnbJdxtqoQfjWz8caHAU6OAbaOmwj8Z3SE0LDVIHJnoLAzZj5nWduQC7-aaFlKjzBuMc-_B5oDbs-pD8gInuv8uf3hfPq3RJzhy0Ca9-dUrWd7erxUO2fLl_XNwsM8ulHjJpHFrZQME1sCovUXMuGqtLXYFUokDTVCVybtBVUkkjAAuslGjAKYtVIaaE_fTaGFKK6Oo--h3EQ83yenyu_vPckZn9MAk2WG_DPnbHif8AX8lNb-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strain self-sensing capability of a tidal turbine blade fabricated of PU-foam/glass fiber/epoxy composites using MWCNTs</title><source>Sage Journals Online</source><creator>Rubio-González, Carlos ; José-Trujillo, Eduardo ; Alejandro Rodríguez-González, Julio ; Espinoza-Hernández, Jaime ; Manzo-Preciado, José Alfredo</creator><creatorcontrib>Rubio-González, Carlos ; José-Trujillo, Eduardo ; Alejandro Rodríguez-González, Julio ; Espinoza-Hernández, Jaime ; Manzo-Preciado, José Alfredo</creatorcontrib><description>A novel marine composite structure (experimental tidal turbine blade) made up of a polyurethane (PU) foam/glass fiber/epoxy resin composite with multiwall carbon nanotubes (MWCNTs) is proposed herein to self-sense its strain under a structural test scenario. To achieve this, MWCNTs were deposited onto glass fiber fabric by spray-coating technique in order to form an effective electrical percolation network onto the external skin surface of the tidal turbine blade which enables piezoresistive capability. After MWCNT deposition, the blade was manufactured by means of one-shot resin transfer molding (RTM) in a closed and heated metallic mold specially designed with a blade geometry of 67 cm length. The results confirm that the spray coating technique is a viable method to deposit MWCNTs onto glass fiber surface and form electrical networks into the blade at a relatively low MWCNT concentration. Finite element analysis (FEA) predicted a suitable structural blade design with a maximum failure index value of 0.9 attained in the blade shear web. The measured longitudinal strains of the tidal turbine blade were in good agreement with the numerical strain values predicted with FEA. Electromechanical tests carried out on a structural test rig designed and instrumented for tidal turbine blades showed that the electrical resistance change response of carbon nanotube (CNT) network integrated into the blade was capable of following the mechanical curve response up to the blade limit load, confirming its ability to self-sense its strain in real time.</description><identifier>ISSN: 0731-6844</identifier><identifier>EISSN: 1530-7964</identifier><identifier>DOI: 10.1177/07316844221127637</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Journal of reinforced plastics and composites, 2023-04, Vol.42 (7-8), p.363-376</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c247t-4bfec4da527a1908e7223dc7879a4635ebd98e22bef9464b3ae5e963daf6ce953</citedby><cites>FETCH-LOGICAL-c247t-4bfec4da527a1908e7223dc7879a4635ebd98e22bef9464b3ae5e963daf6ce953</cites><orcidid>0000-0001-7959-6203 ; 0000-0001-7027-9252 ; 0000-0003-3899-842X ; 0000-0002-4447-3788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27906,27907,79114</link.rule.ids></links><search><creatorcontrib>Rubio-González, Carlos</creatorcontrib><creatorcontrib>José-Trujillo, Eduardo</creatorcontrib><creatorcontrib>Alejandro Rodríguez-González, Julio</creatorcontrib><creatorcontrib>Espinoza-Hernández, Jaime</creatorcontrib><creatorcontrib>Manzo-Preciado, José Alfredo</creatorcontrib><title>Strain self-sensing capability of a tidal turbine blade fabricated of PU-foam/glass fiber/epoxy composites using MWCNTs</title><title>Journal of reinforced plastics and composites</title><description>A novel marine composite structure (experimental tidal turbine blade) made up of a polyurethane (PU) foam/glass fiber/epoxy resin composite with multiwall carbon nanotubes (MWCNTs) is proposed herein to self-sense its strain under a structural test scenario. To achieve this, MWCNTs were deposited onto glass fiber fabric by spray-coating technique in order to form an effective electrical percolation network onto the external skin surface of the tidal turbine blade which enables piezoresistive capability. After MWCNT deposition, the blade was manufactured by means of one-shot resin transfer molding (RTM) in a closed and heated metallic mold specially designed with a blade geometry of 67 cm length. The results confirm that the spray coating technique is a viable method to deposit MWCNTs onto glass fiber surface and form electrical networks into the blade at a relatively low MWCNT concentration. Finite element analysis (FEA) predicted a suitable structural blade design with a maximum failure index value of 0.9 attained in the blade shear web. The measured longitudinal strains of the tidal turbine blade were in good agreement with the numerical strain values predicted with FEA. Electromechanical tests carried out on a structural test rig designed and instrumented for tidal turbine blades showed that the electrical resistance change response of carbon nanotube (CNT) network integrated into the blade was capable of following the mechanical curve response up to the blade limit load, confirming its ability to self-sense its strain in real time.</description><issn>0731-6844</issn><issn>1530-7964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAURC0EEqXwAez8A2njR-xkiSpeUnlItGIZXTvXlas0juxU0L-nAXZIrGYxc0ajIeSa5TPGtJ7nWjBVSsk5Y1wroU_IhBUiz3Sl5CmZjH42Bs7JRUrbPOdMSjkhH29DBN_RhK3LEnbJdxtqoQfjWz8caHAU6OAbaOmwj8Z3SE0LDVIHJnoLAzZj5nWduQC7-aaFlKjzBuMc-_B5oDbs-pD8gInuv8uf3hfPq3RJzhy0Ca9-dUrWd7erxUO2fLl_XNwsM8ulHjJpHFrZQME1sCovUXMuGqtLXYFUokDTVCVybtBVUkkjAAuslGjAKYtVIaaE_fTaGFKK6Oo--h3EQ83yenyu_vPckZn9MAk2WG_DPnbHif8AX8lNb-o</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Rubio-González, Carlos</creator><creator>José-Trujillo, Eduardo</creator><creator>Alejandro Rodríguez-González, Julio</creator><creator>Espinoza-Hernández, Jaime</creator><creator>Manzo-Preciado, José Alfredo</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7959-6203</orcidid><orcidid>https://orcid.org/0000-0001-7027-9252</orcidid><orcidid>https://orcid.org/0000-0003-3899-842X</orcidid><orcidid>https://orcid.org/0000-0002-4447-3788</orcidid></search><sort><creationdate>202304</creationdate><title>Strain self-sensing capability of a tidal turbine blade fabricated of PU-foam/glass fiber/epoxy composites using MWCNTs</title><author>Rubio-González, Carlos ; José-Trujillo, Eduardo ; Alejandro Rodríguez-González, Julio ; Espinoza-Hernández, Jaime ; Manzo-Preciado, José Alfredo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-4bfec4da527a1908e7223dc7879a4635ebd98e22bef9464b3ae5e963daf6ce953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rubio-González, Carlos</creatorcontrib><creatorcontrib>José-Trujillo, Eduardo</creatorcontrib><creatorcontrib>Alejandro Rodríguez-González, Julio</creatorcontrib><creatorcontrib>Espinoza-Hernández, Jaime</creatorcontrib><creatorcontrib>Manzo-Preciado, José Alfredo</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of reinforced plastics and composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rubio-González, Carlos</au><au>José-Trujillo, Eduardo</au><au>Alejandro Rodríguez-González, Julio</au><au>Espinoza-Hernández, Jaime</au><au>Manzo-Preciado, José Alfredo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain self-sensing capability of a tidal turbine blade fabricated of PU-foam/glass fiber/epoxy composites using MWCNTs</atitle><jtitle>Journal of reinforced plastics and composites</jtitle><date>2023-04</date><risdate>2023</risdate><volume>42</volume><issue>7-8</issue><spage>363</spage><epage>376</epage><pages>363-376</pages><issn>0731-6844</issn><eissn>1530-7964</eissn><abstract>A novel marine composite structure (experimental tidal turbine blade) made up of a polyurethane (PU) foam/glass fiber/epoxy resin composite with multiwall carbon nanotubes (MWCNTs) is proposed herein to self-sense its strain under a structural test scenario. To achieve this, MWCNTs were deposited onto glass fiber fabric by spray-coating technique in order to form an effective electrical percolation network onto the external skin surface of the tidal turbine blade which enables piezoresistive capability. After MWCNT deposition, the blade was manufactured by means of one-shot resin transfer molding (RTM) in a closed and heated metallic mold specially designed with a blade geometry of 67 cm length. The results confirm that the spray coating technique is a viable method to deposit MWCNTs onto glass fiber surface and form electrical networks into the blade at a relatively low MWCNT concentration. Finite element analysis (FEA) predicted a suitable structural blade design with a maximum failure index value of 0.9 attained in the blade shear web. The measured longitudinal strains of the tidal turbine blade were in good agreement with the numerical strain values predicted with FEA. Electromechanical tests carried out on a structural test rig designed and instrumented for tidal turbine blades showed that the electrical resistance change response of carbon nanotube (CNT) network integrated into the blade was capable of following the mechanical curve response up to the blade limit load, confirming its ability to self-sense its strain in real time.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/07316844221127637</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7959-6203</orcidid><orcidid>https://orcid.org/0000-0001-7027-9252</orcidid><orcidid>https://orcid.org/0000-0003-3899-842X</orcidid><orcidid>https://orcid.org/0000-0002-4447-3788</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0731-6844
ispartof Journal of reinforced plastics and composites, 2023-04, Vol.42 (7-8), p.363-376
issn 0731-6844
1530-7964
language eng
recordid cdi_crossref_primary_10_1177_07316844221127637
source Sage Journals Online
title Strain self-sensing capability of a tidal turbine blade fabricated of PU-foam/glass fiber/epoxy composites using MWCNTs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A20%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20self-sensing%20capability%20of%20a%20tidal%20turbine%20blade%20fabricated%20of%20PU-foam/glass%20fiber/epoxy%20composites%20using%20MWCNTs&rft.jtitle=Journal%20of%20reinforced%20plastics%20and%20composites&rft.au=Rubio-Gonz%C3%A1lez,%20Carlos&rft.date=2023-04&rft.volume=42&rft.issue=7-8&rft.spage=363&rft.epage=376&rft.pages=363-376&rft.issn=0731-6844&rft.eissn=1530-7964&rft_id=info:doi/10.1177/07316844221127637&rft_dat=%3Csage_cross%3E10.1177_07316844221127637%3C/sage_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c247t-4bfec4da527a1908e7223dc7879a4635ebd98e22bef9464b3ae5e963daf6ce953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_07316844221127637&rfr_iscdi=true