Loading…
Development and validation of simple-shield thermocouple in fire environments
A novel simple-shield thermocouple that is capable of radiation correction in fire environments and that has a simpler structure and greater convenience than conventional aspirated thermocouples was proposed. The measurement errors of bare-bead, double-shield aspirated, and simple-shield thermocoupl...
Saved in:
Published in: | Journal of fire sciences 2021-01, Vol.39 (1), p.53-71 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel simple-shield thermocouple that is capable of radiation correction in fire environments and that has a simpler structure and greater convenience than conventional aspirated thermocouples was proposed. The measurement errors of bare-bead, double-shield aspirated, and simple-shield thermocouples were then compared in a simulated fire environment. In addition, a fire experiment using wood cribs was performed in order to verify the measurement performance of the proposed simple-shield thermocouple in a real fire environment using a one-third-scale ISO 9705 room. The simple-shield thermocouple produced fairly accurate temperatures that fell within 5% of the actual gas temperature in the simulated fire environment. In addition, variations in the surface emissivity and the installation angle of the simple-shield thermocouple in the real fire environment further reduced the measurement error. With a radiant heat flux of 20 kW/m2, it was confirmed that the bare-bead thermocouple had a relative measurement error of up to 80% compared to the aspirated thermocouple, while the proposed simple-shield thermocouple was capable of measuring the temperature within a relative error of around 15% compared to the aspirated thermocouple. |
---|---|
ISSN: | 0734-9041 1530-8049 |
DOI: | 10.1177/0734904120963812 |