Loading…

Facile fabrication of hyaluronated starch nanogels for efficient docetaxel delivery

In this study, we designed and synthesized polysaccharidic nanogels comprising starch cross-linked with hyaluronic acid. These hyaluronated starch nanogels were prepared by cross-linking primary hydroxyl groups in polysaccharides (starch and hyaluronic acid) and epoxide groups in 1,4-butanediol digl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bioactive and compatible polymers 2019-07, Vol.34 (4-5), p.321-330
Main Authors: Yu, Hyeong Sup, Koo, Mijin, Choi, Sung-Wook, Na, Kun, Oh, Kyung Taek, Youn, Yu Seok, Lee, Eun Seong
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, we designed and synthesized polysaccharidic nanogels comprising starch cross-linked with hyaluronic acid. These hyaluronated starch nanogels were prepared by cross-linking primary hydroxyl groups in polysaccharides (starch and hyaluronic acid) and epoxide groups in 1,4-butanediol diglycidyl ether (used as a cross-linking agent). The nanogels take advantage of hyaluronic acid as a specific ligand for CD44 receptors overexpressed on tumors and the hyaluronic acid/starch core as a compartment for the encapsulation of docetaxel (as model antitumor drug). Here, hyaluronic acid can be enzymatically degraded by tumor cell–specific enzyme (e.g. hyaluronidase-1), which could significantly accelerate docetaxel release from the nanogels. Our experimental results demonstrate that the nanogels promote the release of docetaxel content in the presence of hyaluronidase-1 enzyme. As a result, the nanogels selectively inhibited MCF-7 (with CD44 receptor and hyaluronidase-1 enzyme) tumor cell growth in vitro, suggesting their therapeutic potential for efficient tumor ablation.
ISSN:0883-9115
1530-8030
DOI:10.1177/0883911519876067