Loading…
A study of the mechanical, thermal and rheological properties of sisal fiber-reinforced polylactic acid bio-composites with tributyl 2-acetylcitrate as a plasticizer
In this study, bio-composites were developed using polylactic acid (PLA) as the matrix and sisal fibers (SFs) derived from agave sisalana leaves as the reinforcement. The bio-composites were prepared through injection molding with the addition of tributyl 2-acetylcitrate (ATBC) plasticizer. The mech...
Saved in:
Published in: | Journal of thermoplastic composite materials 2024-11, Vol.37 (11), p.3516-3539 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, bio-composites were developed using polylactic acid (PLA) as the matrix and sisal fibers (SFs) derived from agave sisalana leaves as the reinforcement. The bio-composites were prepared through injection molding with the addition of tributyl 2-acetylcitrate (ATBC) plasticizer. The mechanical, thermal, and rheological properties of these bio-composites were investigated to understand the effects of fiber and plasticizer contents. The results showed that the addition of SFs improved the tensile and flexural moduli of the bio-composites but led to a decrease in tensile strength compared to neat PLA. The flexural strength initially decreased with low fiber content but recovered to the level of neat PLA as the fiber content increased. The impact strength increased with the incorporation of SFs and ATBC. However, the presence of ATBC had a negative impact on the tensile and flexural properties of the bio-composites. The thermal conductivity of the materials was influenced by the fiber content and processing temperature, increasing with SFs inclusion but decreasing with temperature. Differential scanning calorimetry analysis revealed increased crystallinity of PLA with the presence of SFs and ATBC. The specific heat capacity increased with ATBC but decreased with increasing SFs. Dynamic mechanical property testing showed variations in storage and loss moduli of the bio-composites at different temperatures. The storage modulus increased with higher fiber content and abruptly dropped around glass transition temperature. Rheological characterization demonstrated effective interactions between the fibers and matrix with good fiber dispersion, resulting in uniform shear viscosity versus shear rate for different capillary dimensions. The shear viscosity of the SFs/PLA mixture increased with increasing fiber content but decreased with the addition of plasticizer. Furthermore, the compounding and molding processes had a notable impact on the microstructure of the fibers, specifically resulting in fiber breakage and fiber separation during processing. |
---|---|
ISSN: | 0892-7057 1530-7980 |
DOI: | 10.1177/08927057241235649 |