Loading…

Preparation and characterization of SPES/PVA (double-layer) membrane for vanadium redox flow battery

The double-layer membrane consisting of sulfonated poly(ether sulfone) (SPES) sub-layer and polyvinyl alcohol (PVA) sub-layer (denoted as SPES/PVA membrane) was prepared and employed as the separator for vanadium redox flow battery (VRB) system to evaluate the vanadium ions permeability and cell per...

Full description

Saved in:
Bibliographic Details
Published in:High performance polymers 2019-03, Vol.31 (2), p.148-153
Main Authors: Xie, Jili, Li, Guanlin, Tan, Wang
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The double-layer membrane consisting of sulfonated poly(ether sulfone) (SPES) sub-layer and polyvinyl alcohol (PVA) sub-layer (denoted as SPES/PVA membrane) was prepared and employed as the separator for vanadium redox flow battery (VRB) system to evaluate the vanadium ions permeability and cell performance. The SPES/PVA membrane is a double-layer structure and exhibits dramatically lower vanadium ions permeability and better cell performance compared to the pristine SPES membrane, PVA membrane, and Nafion117 membrane. The vanadium ion permeability of SPES/PVA membrane is one order of magnitude lower than that of Nafion117 membrane. In further work, the single cell with SPES/PVA membrane showed significantly lower capacity loss, higher coulombic efficiency (>92.5%), and higher energy efficiency (>83.9%) than Nafion117 membrane. In the self-discharge test, SPES/PVA membrane showed 1.8 times longer duration in the open circuit decay than Nafion117 membrane. With all the good properties and low cost, this new kind of double-layer membrane is suggested to have excellent commercial prospects as an ion exchange membrane for VRB systems.
ISSN:0954-0083
1361-6412
DOI:10.1177/0954008317753270