Loading…
Localization robustness improvement for an autonomous race car using multiple extended Kalman filters
In this paper, we introduce a vehicle localization method designed for the SZEnergy race car, which competes in the Shell Eco-marathon. The proposed method comprises four different extended Kalman filter-based localization algorithms and a selection algorithm that determines the most suitable one ba...
Saved in:
Published in: | Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering Journal of automobile engineering, 2024-07 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we introduce a vehicle localization method designed for the SZEnergy race car, which competes in the Shell Eco-marathon. The proposed method comprises four different extended Kalman filter-based localization algorithms and a selection algorithm that determines the most suitable one based on vehicle speed, GNSS availability, and signal quality. The low-speed Kalman filters are based on a kinematic vehicle model while the high-speed variants are based on a dynamic vehicle model. Several measurements were performed during test maneuvers to evaluate the performance of the filters. The proposed method succesfully handles sensor miscalibration and GNSS outages. |
---|---|
ISSN: | 0954-4070 2041-2991 |
DOI: | 10.1177/09544070241266281 |