Loading…

Robust adaptive nonsingular fast terminal sliding mode control for cable driven parallel robots

Cable-driven parallel robots are typical parallel robots with the end effectors are adjusted by lightweight cables. To acquire fast and high-precision trajectory tracking performances of the end effector, a robust adaptive nonsingular fast terminal sliding mode control law based on the radial basis...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering Journal of systems and control engineering, 2024-12
Main Authors: Lu, Yingbo, Huang, Ao, Li, Pengfei, Wu, Qing’e, Liu, Ya
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c127t-95b8779587ab4a13656e327acc822e4fc789ef95c8c126052a8d6488f7b80e7d3
container_end_page
container_issue
container_start_page
container_title Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering
container_volume
creator Lu, Yingbo
Huang, Ao
Li, Pengfei
Wu, Qing’e
Liu, Ya
description Cable-driven parallel robots are typical parallel robots with the end effectors are adjusted by lightweight cables. To acquire fast and high-precision trajectory tracking performances of the end effector, a robust adaptive nonsingular fast terminal sliding mode control law based on the radial basis function neural network is proposed, in which the priori model information of cable-driven parallel robots is not required. The proposed scheme combines the radial basis function neural network method with a nonsingular fast terminal sliding mode control structure, which contains three terms (the radial basis function neural network term, the hyperbolic tangent function term, and the robust control term), and it can not only weaken the chattering phenomenon but also increase the system robustness. Under the proposed scheme, the finite-time stability of the closed-loop system in the presence of external disturbances is demonstrated by the Lyapunov theorem. Finally, simulation comparisons are performed under three scenarios to validate the performance improvements of the proposed algorithm.
doi_str_mv 10.1177/09596518241301839
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1177_09596518241301839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1177_09596518241301839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c127t-95b8779587ab4a13656e327acc822e4fc789ef95c8c126052a8d6488f7b80e7d3</originalsourceid><addsrcrecordid>eNplkM1KxTAUhIMoWK8-gLu8QDU_TZMs5eIfXBBE1-UkTaSSJiXJFXx7W3TnWcxZfDOzGISuKbmhVMpbooXuBVWso5xQxfUJahjpaMtXOUXNxtvNcI4uSvkk6yktGzS8JnMsFcMIS52-HI4plil-HANk7GEl1eV5ihBwCdO4Ejyn0WGbYs0pYJ8ytmCCw2Ne4xEvkCEEF3BOJtVyic48hOKu_v4OvT_cv-2f2sPL4_P-7tBaymRttTBKSi2UBNMB5b3oHWcSrFWMuc5bqbTzWli1-nsiGKix75Ty0iji5Mh3iP722pxKyc4PS55myN8DJcO20PBvIf4D6N5aJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust adaptive nonsingular fast terminal sliding mode control for cable driven parallel robots</title><source>SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list)</source><source>SAGE IMechE Complete Collection</source><creator>Lu, Yingbo ; Huang, Ao ; Li, Pengfei ; Wu, Qing’e ; Liu, Ya</creator><creatorcontrib>Lu, Yingbo ; Huang, Ao ; Li, Pengfei ; Wu, Qing’e ; Liu, Ya</creatorcontrib><description>Cable-driven parallel robots are typical parallel robots with the end effectors are adjusted by lightweight cables. To acquire fast and high-precision trajectory tracking performances of the end effector, a robust adaptive nonsingular fast terminal sliding mode control law based on the radial basis function neural network is proposed, in which the priori model information of cable-driven parallel robots is not required. The proposed scheme combines the radial basis function neural network method with a nonsingular fast terminal sliding mode control structure, which contains three terms (the radial basis function neural network term, the hyperbolic tangent function term, and the robust control term), and it can not only weaken the chattering phenomenon but also increase the system robustness. Under the proposed scheme, the finite-time stability of the closed-loop system in the presence of external disturbances is demonstrated by the Lyapunov theorem. Finally, simulation comparisons are performed under three scenarios to validate the performance improvements of the proposed algorithm.</description><identifier>ISSN: 0959-6518</identifier><identifier>EISSN: 2041-3041</identifier><identifier>DOI: 10.1177/09596518241301839</identifier><language>eng</language><ispartof>Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering, 2024-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c127t-95b8779587ab4a13656e327acc822e4fc789ef95c8c126052a8d6488f7b80e7d3</cites><orcidid>0009-0008-3888-1014 ; 0009-0007-4742-1928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lu, Yingbo</creatorcontrib><creatorcontrib>Huang, Ao</creatorcontrib><creatorcontrib>Li, Pengfei</creatorcontrib><creatorcontrib>Wu, Qing’e</creatorcontrib><creatorcontrib>Liu, Ya</creatorcontrib><title>Robust adaptive nonsingular fast terminal sliding mode control for cable driven parallel robots</title><title>Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering</title><description>Cable-driven parallel robots are typical parallel robots with the end effectors are adjusted by lightweight cables. To acquire fast and high-precision trajectory tracking performances of the end effector, a robust adaptive nonsingular fast terminal sliding mode control law based on the radial basis function neural network is proposed, in which the priori model information of cable-driven parallel robots is not required. The proposed scheme combines the radial basis function neural network method with a nonsingular fast terminal sliding mode control structure, which contains three terms (the radial basis function neural network term, the hyperbolic tangent function term, and the robust control term), and it can not only weaken the chattering phenomenon but also increase the system robustness. Under the proposed scheme, the finite-time stability of the closed-loop system in the presence of external disturbances is demonstrated by the Lyapunov theorem. Finally, simulation comparisons are performed under three scenarios to validate the performance improvements of the proposed algorithm.</description><issn>0959-6518</issn><issn>2041-3041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNplkM1KxTAUhIMoWK8-gLu8QDU_TZMs5eIfXBBE1-UkTaSSJiXJFXx7W3TnWcxZfDOzGISuKbmhVMpbooXuBVWso5xQxfUJahjpaMtXOUXNxtvNcI4uSvkk6yktGzS8JnMsFcMIS52-HI4plil-HANk7GEl1eV5ihBwCdO4Ejyn0WGbYs0pYJ8ytmCCw2Ne4xEvkCEEF3BOJtVyic48hOKu_v4OvT_cv-2f2sPL4_P-7tBaymRttTBKSi2UBNMB5b3oHWcSrFWMuc5bqbTzWli1-nsiGKix75Ty0iji5Mh3iP722pxKyc4PS55myN8DJcO20PBvIf4D6N5aJw</recordid><startdate>20241224</startdate><enddate>20241224</enddate><creator>Lu, Yingbo</creator><creator>Huang, Ao</creator><creator>Li, Pengfei</creator><creator>Wu, Qing’e</creator><creator>Liu, Ya</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0008-3888-1014</orcidid><orcidid>https://orcid.org/0009-0007-4742-1928</orcidid></search><sort><creationdate>20241224</creationdate><title>Robust adaptive nonsingular fast terminal sliding mode control for cable driven parallel robots</title><author>Lu, Yingbo ; Huang, Ao ; Li, Pengfei ; Wu, Qing’e ; Liu, Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c127t-95b8779587ab4a13656e327acc822e4fc789ef95c8c126052a8d6488f7b80e7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yingbo</creatorcontrib><creatorcontrib>Huang, Ao</creatorcontrib><creatorcontrib>Li, Pengfei</creatorcontrib><creatorcontrib>Wu, Qing’e</creatorcontrib><creatorcontrib>Liu, Ya</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yingbo</au><au>Huang, Ao</au><au>Li, Pengfei</au><au>Wu, Qing’e</au><au>Liu, Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust adaptive nonsingular fast terminal sliding mode control for cable driven parallel robots</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering</jtitle><date>2024-12-24</date><risdate>2024</risdate><issn>0959-6518</issn><eissn>2041-3041</eissn><abstract>Cable-driven parallel robots are typical parallel robots with the end effectors are adjusted by lightweight cables. To acquire fast and high-precision trajectory tracking performances of the end effector, a robust adaptive nonsingular fast terminal sliding mode control law based on the radial basis function neural network is proposed, in which the priori model information of cable-driven parallel robots is not required. The proposed scheme combines the radial basis function neural network method with a nonsingular fast terminal sliding mode control structure, which contains three terms (the radial basis function neural network term, the hyperbolic tangent function term, and the robust control term), and it can not only weaken the chattering phenomenon but also increase the system robustness. Under the proposed scheme, the finite-time stability of the closed-loop system in the presence of external disturbances is demonstrated by the Lyapunov theorem. Finally, simulation comparisons are performed under three scenarios to validate the performance improvements of the proposed algorithm.</abstract><doi>10.1177/09596518241301839</doi><orcidid>https://orcid.org/0009-0008-3888-1014</orcidid><orcidid>https://orcid.org/0009-0007-4742-1928</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0959-6518
ispartof Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering, 2024-12
issn 0959-6518
2041-3041
language eng
recordid cdi_crossref_primary_10_1177_09596518241301839
source SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list); SAGE IMechE Complete Collection
title Robust adaptive nonsingular fast terminal sliding mode control for cable driven parallel robots
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20adaptive%20nonsingular%20fast%20terminal%20sliding%20mode%20control%20for%20cable%20driven%20parallel%20robots&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20I,%20Journal%20of%20systems%20and%20control%20engineering&rft.au=Lu,%20Yingbo&rft.date=2024-12-24&rft.issn=0959-6518&rft.eissn=2041-3041&rft_id=info:doi/10.1177/09596518241301839&rft_dat=%3Ccrossref%3E10_1177_09596518241301839%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c127t-95b8779587ab4a13656e327acc822e4fc789ef95c8c126052a8d6488f7b80e7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true