Loading…
Enhanced properties of magnetorheological fluids: Effect of pressure
Magnetorheological fluids are extensively used in the industrial world to produce dissipative systems in an easily adjustable or even self-adaptive way. Sometimes their intrinsic rheological properties fail to meet system requirements in terms of available forces or yield stress for a given design s...
Saved in:
Published in: | Journal of intelligent material systems and structures 2015-09, Vol.26 (14), p.1764-1775 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Magnetorheological fluids are extensively used in the industrial world to produce dissipative systems in an easily adjustable or even self-adaptive way. Sometimes their intrinsic rheological properties fail to meet system requirements in terms of available forces or yield stress for a given design space. In technical literature, previous works show a dependency of the shear strength of magnetorheological fluids on the internal pressure of the fluid, called squeeze strengthen effect. This work aims at the experimental validation of the behaviour of the magnetorheological fluids in both flow and shear modes under a given compressive state. Two specific ad hoc experimental test rigs are used for the campaign. The systems are designed in order to apply the magnetic field and the pressure at the same time and the tests are carried out following a design of experiment method. The magnetic parts of the system are designed with the help of a magnetic finite element simulation software, then the experiments are performed and the results are collected. The output is analysed through an analysis of variance approach, a statistical procedure that shows the influence of multiple variables on the system outputs. The outcome of the experimental tests confirms the beneficial effect of the pressure in both flow and shear modes, with performances up to three times compared with the datasheet values, where no pressure is considered. |
---|---|
ISSN: | 1045-389X 1530-8138 |
DOI: | 10.1177/1045389X15571386 |