Loading…

Electrorheological behaviour of suspensions in silicone oil of doped polyaniline nanostructures containing carbon nanoparticles

Electrorheological fluids have been paying a lot of attention due to their potential use in active control of various devices in mechanics, biomedicine or robotics. An electrorheological fluid consisting of polarizable particles dispersed in a non-conducting liquid is considered to be one of the mos...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent material systems and structures 2019-03, Vol.30 (5), p.755-763
Main Authors: Santos, Jenifer, Goswami, Sumita, Calero, Nuria, Cidade, Maria Teresa
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electrorheological fluids have been paying a lot of attention due to their potential use in active control of various devices in mechanics, biomedicine or robotics. An electrorheological fluid consisting of polarizable particles dispersed in a non-conducting liquid is considered to be one of the most interesting and important smart fluids. This work presents the effect of the dopant, camphorsulphonic acid or citric acid, on the electrorheological behaviour of suspensions of doped polyaniline nanostructures dispersed in silicone oil, revealing its key role. The influence of carbon nanoparticle concentration has also been studied for these dispersions. All the samples showed an electrorheological effect, which increased with electric field and nanostructure concentration and decreased with silicone oil viscosity. However, the magnitude of this effect was strongly influenced not only by carbon nanoparticle concentration but also by the dopant material. The electrorheological effect was much lower with a higher carbon nanoparticle concentration and doped with citric acid. The latter is probably due to the different acidities of the dopants that lead to a different conductivity of polyaniline nanostructures. Furthermore, the effect of the carbon nanoparticles could be related to its charge trapping mechanism, while the charge transfer through the polymeric backbone occurs by hopping. Polyaniline/camphorsulphonic acid composite nanostructures dispersed in silicone oil exhibited the highest electrorheological activity, higher than three decades increase in apparent viscosity for low shear rates and high electric fields, showing their potential application as electrorheological smart materials.
ISSN:1045-389X
1530-8138
DOI:10.1177/1045389X18818776