Loading…

Homogenization of cohesive fracture in masonry structures

We derive a homogenized mechanical model of a masonry-type structure constituted by a periodic assemblage of blocks with interposed mortar joints. The energy functionals in the model under investigation consist of (i) a linear elastic contribution within the blocks, (ii) a Barenblatt’s cohesive cont...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics and mechanics of solids 2020-02, Vol.25 (2), p.181-200
Main Authors: Braides, Andrea, Nodargi, Nicola A
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c281t-72029ce0850a2cc671b35187bf8408204b667b4b8ec5de5339019a9591a3ec363
cites cdi_FETCH-LOGICAL-c281t-72029ce0850a2cc671b35187bf8408204b667b4b8ec5de5339019a9591a3ec363
container_end_page 200
container_issue 2
container_start_page 181
container_title Mathematics and mechanics of solids
container_volume 25
creator Braides, Andrea
Nodargi, Nicola A
description We derive a homogenized mechanical model of a masonry-type structure constituted by a periodic assemblage of blocks with interposed mortar joints. The energy functionals in the model under investigation consist of (i) a linear elastic contribution within the blocks, (ii) a Barenblatt’s cohesive contribution at contact surfaces between blocks, and (iii) a suitable unilateral condition on the strain across contact surfaces, and are governed by a small parameter representing the typical ratio between the length of the blocks and the dimension of the structure. Using the terminology of Γ -convergence and within the functional setting supplied by the functions of bounded deformation, we analyze the asymptotic behavior of such energy functionals when the parameter tends to zero, and derive a simple homogenization formula for the limit energy. Furthermore, we highlight the main mathematical and mechanical properties of the homogenized energy, including its non-standard growth conditions under tension or compression. The key point in the limit process is the definition of macroscopic tensile and compressive stresses, which are determined by the unilateral conditions on contact surfaces and the geometry of the blocks.
doi_str_mv 10.1177/1081286519870222
format article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1081286519870222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1081286519870222</sage_id><sourcerecordid>10.1177_1081286519870222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-72029ce0850a2cc671b35187bf8408204b667b4b8ec5de5339019a9591a3ec363</originalsourceid><addsrcrecordid>eNp1j0FLAzEQhYMoWFvvHvMHojOTzSY5SlFbKHix5yUbs3WLu5FkV6i_3q31JHiaYb73hvcYu0G4RdT6DsEgmVKhNRqI6IzNUBcoJJA5n_YJiyO_ZFc57wGAlJYzZlexi7vQt19uaGPPY8N9fAu5_Qy8Sc4PYwq87XnncuzTgechjT_HvGAXjXvP4fp3ztn28eFluRKb56f18n4jPBkchCYg6wMYBY68LzXWUqHRdWMKMARFXZa6LmoTvHoNSkoLaJ1VFp0MXpZyzuD016eYcwpN9ZHazqVDhVAdq1d_q08WcbJktwvVPo6pnxL-r_8G07dX_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Homogenization of cohesive fracture in masonry structures</title><source>SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024: Reading List</source><creator>Braides, Andrea ; Nodargi, Nicola A</creator><creatorcontrib>Braides, Andrea ; Nodargi, Nicola A</creatorcontrib><description>We derive a homogenized mechanical model of a masonry-type structure constituted by a periodic assemblage of blocks with interposed mortar joints. The energy functionals in the model under investigation consist of (i) a linear elastic contribution within the blocks, (ii) a Barenblatt’s cohesive contribution at contact surfaces between blocks, and (iii) a suitable unilateral condition on the strain across contact surfaces, and are governed by a small parameter representing the typical ratio between the length of the blocks and the dimension of the structure. Using the terminology of Γ -convergence and within the functional setting supplied by the functions of bounded deformation, we analyze the asymptotic behavior of such energy functionals when the parameter tends to zero, and derive a simple homogenization formula for the limit energy. Furthermore, we highlight the main mathematical and mechanical properties of the homogenized energy, including its non-standard growth conditions under tension or compression. The key point in the limit process is the definition of macroscopic tensile and compressive stresses, which are determined by the unilateral conditions on contact surfaces and the geometry of the blocks.</description><identifier>ISSN: 1081-2865</identifier><identifier>EISSN: 1741-3028</identifier><identifier>DOI: 10.1177/1081286519870222</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Mathematics and mechanics of solids, 2020-02, Vol.25 (2), p.181-200</ispartof><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-72029ce0850a2cc671b35187bf8408204b667b4b8ec5de5339019a9591a3ec363</citedby><cites>FETCH-LOGICAL-c281t-72029ce0850a2cc671b35187bf8408204b667b4b8ec5de5339019a9591a3ec363</cites><orcidid>0000-0002-8845-8520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923,79134</link.rule.ids></links><search><creatorcontrib>Braides, Andrea</creatorcontrib><creatorcontrib>Nodargi, Nicola A</creatorcontrib><title>Homogenization of cohesive fracture in masonry structures</title><title>Mathematics and mechanics of solids</title><description>We derive a homogenized mechanical model of a masonry-type structure constituted by a periodic assemblage of blocks with interposed mortar joints. The energy functionals in the model under investigation consist of (i) a linear elastic contribution within the blocks, (ii) a Barenblatt’s cohesive contribution at contact surfaces between blocks, and (iii) a suitable unilateral condition on the strain across contact surfaces, and are governed by a small parameter representing the typical ratio between the length of the blocks and the dimension of the structure. Using the terminology of Γ -convergence and within the functional setting supplied by the functions of bounded deformation, we analyze the asymptotic behavior of such energy functionals when the parameter tends to zero, and derive a simple homogenization formula for the limit energy. Furthermore, we highlight the main mathematical and mechanical properties of the homogenized energy, including its non-standard growth conditions under tension or compression. The key point in the limit process is the definition of macroscopic tensile and compressive stresses, which are determined by the unilateral conditions on contact surfaces and the geometry of the blocks.</description><issn>1081-2865</issn><issn>1741-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1j0FLAzEQhYMoWFvvHvMHojOTzSY5SlFbKHix5yUbs3WLu5FkV6i_3q31JHiaYb73hvcYu0G4RdT6DsEgmVKhNRqI6IzNUBcoJJA5n_YJiyO_ZFc57wGAlJYzZlexi7vQt19uaGPPY8N9fAu5_Qy8Sc4PYwq87XnncuzTgechjT_HvGAXjXvP4fp3ztn28eFluRKb56f18n4jPBkchCYg6wMYBY68LzXWUqHRdWMKMARFXZa6LmoTvHoNSkoLaJ1VFp0MXpZyzuD016eYcwpN9ZHazqVDhVAdq1d_q08WcbJktwvVPo6pnxL-r_8G07dX_g</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Braides, Andrea</creator><creator>Nodargi, Nicola A</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8845-8520</orcidid></search><sort><creationdate>202002</creationdate><title>Homogenization of cohesive fracture in masonry structures</title><author>Braides, Andrea ; Nodargi, Nicola A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-72029ce0850a2cc671b35187bf8408204b667b4b8ec5de5339019a9591a3ec363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braides, Andrea</creatorcontrib><creatorcontrib>Nodargi, Nicola A</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics and mechanics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braides, Andrea</au><au>Nodargi, Nicola A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homogenization of cohesive fracture in masonry structures</atitle><jtitle>Mathematics and mechanics of solids</jtitle><date>2020-02</date><risdate>2020</risdate><volume>25</volume><issue>2</issue><spage>181</spage><epage>200</epage><pages>181-200</pages><issn>1081-2865</issn><eissn>1741-3028</eissn><abstract>We derive a homogenized mechanical model of a masonry-type structure constituted by a periodic assemblage of blocks with interposed mortar joints. The energy functionals in the model under investigation consist of (i) a linear elastic contribution within the blocks, (ii) a Barenblatt’s cohesive contribution at contact surfaces between blocks, and (iii) a suitable unilateral condition on the strain across contact surfaces, and are governed by a small parameter representing the typical ratio between the length of the blocks and the dimension of the structure. Using the terminology of Γ -convergence and within the functional setting supplied by the functions of bounded deformation, we analyze the asymptotic behavior of such energy functionals when the parameter tends to zero, and derive a simple homogenization formula for the limit energy. Furthermore, we highlight the main mathematical and mechanical properties of the homogenized energy, including its non-standard growth conditions under tension or compression. The key point in the limit process is the definition of macroscopic tensile and compressive stresses, which are determined by the unilateral conditions on contact surfaces and the geometry of the blocks.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1081286519870222</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-8845-8520</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1081-2865
ispartof Mathematics and mechanics of solids, 2020-02, Vol.25 (2), p.181-200
issn 1081-2865
1741-3028
language eng
recordid cdi_crossref_primary_10_1177_1081286519870222
source SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024: Reading List
title Homogenization of cohesive fracture in masonry structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A54%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homogenization%20of%20cohesive%20fracture%20in%20masonry%20structures&rft.jtitle=Mathematics%20and%20mechanics%20of%20solids&rft.au=Braides,%20Andrea&rft.date=2020-02&rft.volume=25&rft.issue=2&rft.spage=181&rft.epage=200&rft.pages=181-200&rft.issn=1081-2865&rft.eissn=1741-3028&rft_id=info:doi/10.1177/1081286519870222&rft_dat=%3Csage_cross%3E10.1177_1081286519870222%3C/sage_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-72029ce0850a2cc671b35187bf8408204b667b4b8ec5de5339019a9591a3ec363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1081286519870222&rfr_iscdi=true