Loading…

NES 2 RA: Network expansion by stratified variable subsetting and ranking aggregation

Gene network expansion is a task of the foremost importance in computational biology. Gene network expansion aims at finding new genes to expand a given known gene network. To this end, we developed gene@home, a BOINC-based project that finds candidate genes that expand known local gene networks usi...

Full description

Saved in:
Bibliographic Details
Published in:The international journal of high performance computing applications 2018-05, Vol.32 (3), p.380-392
Main Authors: Asnicar, Francesco, Masera, Luca, Coller, Emanuela, Gallo, Caterina, Sella, Nadir, Tolio, Thomas, Morettin, Paolo, Erculiani, Luca, Galante, Francesca, Semeniuta, Stanislau, Malacarne, Giulia, Engelen, Kristof, Argentini, Andrea, Cavecchia, Valter, Moser, Claudio, Blanzieri, Enrico
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-crossref_primary_10_1177_10943420166625083
container_end_page 392
container_issue 3
container_start_page 380
container_title The international journal of high performance computing applications
container_volume 32
creator Asnicar, Francesco
Masera, Luca
Coller, Emanuela
Gallo, Caterina
Sella, Nadir
Tolio, Thomas
Morettin, Paolo
Erculiani, Luca
Galante, Francesca
Semeniuta, Stanislau
Malacarne, Giulia
Engelen, Kristof
Argentini, Andrea
Cavecchia, Valter
Moser, Claudio
Blanzieri, Enrico
description Gene network expansion is a task of the foremost importance in computational biology. Gene network expansion aims at finding new genes to expand a given known gene network. To this end, we developed gene@home, a BOINC-based project that finds candidate genes that expand known local gene networks using NESRA. In this paper, we present NES 2 RA, a novel approach that extends and improves NESRA by modeling, using a probability vector, the confidence of the presence of the genes belonging to the local gene network. NES 2 RA adopts intensive variable-subsetting strategies, enabled by the computational power provided by gene@home volunteers. In particular, we use the skeleton procedure of the PC-algorithm to discover candidate causal relationships within each subset of variables. Finally, we use state-of-the-art aggregators to combine the results into a single ranked candidate genes list. The resulting ranking guides the discovery of unknown relations between genes and a priori known local gene networks. Our experimental results show that NES 2 RA outperforms the PC-algorithm and its order-independent PC-stable version, ARACNE, and our previous approach, NESRA. In this paper we extensively discuss the computational aspects of the NES 2 RA approach and we also present and validate expansions performed on the model plant Arabidopsis thaliana and the model bacteria Escherichia coli.
doi_str_mv 10.1177/1094342016662508
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1094342016662508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1177_1094342016662508</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1177_10943420166625083</originalsourceid><addsrcrecordid>eNpjYJAwNNAzNDQ31zc0sDQxNjEyMDQzMzMyNbBgYuA0NDcx1DWyMDFjAbKB0rogeQ4GruLiLAMDAzMTY1NOBg4_12AFI4UgRx4G1rTEnOJUXijNzWDg5hri7KGbXJRfXFyUmhZfUJSZm1hUGW9oEA-yMR7dRmMytAAAykIuLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NES 2 RA: Network expansion by stratified variable subsetting and ranking aggregation</title><source>SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list)</source><creator>Asnicar, Francesco ; Masera, Luca ; Coller, Emanuela ; Gallo, Caterina ; Sella, Nadir ; Tolio, Thomas ; Morettin, Paolo ; Erculiani, Luca ; Galante, Francesca ; Semeniuta, Stanislau ; Malacarne, Giulia ; Engelen, Kristof ; Argentini, Andrea ; Cavecchia, Valter ; Moser, Claudio ; Blanzieri, Enrico</creator><creatorcontrib>Asnicar, Francesco ; Masera, Luca ; Coller, Emanuela ; Gallo, Caterina ; Sella, Nadir ; Tolio, Thomas ; Morettin, Paolo ; Erculiani, Luca ; Galante, Francesca ; Semeniuta, Stanislau ; Malacarne, Giulia ; Engelen, Kristof ; Argentini, Andrea ; Cavecchia, Valter ; Moser, Claudio ; Blanzieri, Enrico</creatorcontrib><description>Gene network expansion is a task of the foremost importance in computational biology. Gene network expansion aims at finding new genes to expand a given known gene network. To this end, we developed gene@home, a BOINC-based project that finds candidate genes that expand known local gene networks using NESRA. In this paper, we present NES 2 RA, a novel approach that extends and improves NESRA by modeling, using a probability vector, the confidence of the presence of the genes belonging to the local gene network. NES 2 RA adopts intensive variable-subsetting strategies, enabled by the computational power provided by gene@home volunteers. In particular, we use the skeleton procedure of the PC-algorithm to discover candidate causal relationships within each subset of variables. Finally, we use state-of-the-art aggregators to combine the results into a single ranked candidate genes list. The resulting ranking guides the discovery of unknown relations between genes and a priori known local gene networks. Our experimental results show that NES 2 RA outperforms the PC-algorithm and its order-independent PC-stable version, ARACNE, and our previous approach, NESRA. In this paper we extensively discuss the computational aspects of the NES 2 RA approach and we also present and validate expansions performed on the model plant Arabidopsis thaliana and the model bacteria Escherichia coli.</description><identifier>ISSN: 1094-3420</identifier><identifier>EISSN: 1741-2846</identifier><identifier>DOI: 10.1177/1094342016662508</identifier><language>eng</language><ispartof>The international journal of high performance computing applications, 2018-05, Vol.32 (3), p.380-392</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1177_10943420166625083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Asnicar, Francesco</creatorcontrib><creatorcontrib>Masera, Luca</creatorcontrib><creatorcontrib>Coller, Emanuela</creatorcontrib><creatorcontrib>Gallo, Caterina</creatorcontrib><creatorcontrib>Sella, Nadir</creatorcontrib><creatorcontrib>Tolio, Thomas</creatorcontrib><creatorcontrib>Morettin, Paolo</creatorcontrib><creatorcontrib>Erculiani, Luca</creatorcontrib><creatorcontrib>Galante, Francesca</creatorcontrib><creatorcontrib>Semeniuta, Stanislau</creatorcontrib><creatorcontrib>Malacarne, Giulia</creatorcontrib><creatorcontrib>Engelen, Kristof</creatorcontrib><creatorcontrib>Argentini, Andrea</creatorcontrib><creatorcontrib>Cavecchia, Valter</creatorcontrib><creatorcontrib>Moser, Claudio</creatorcontrib><creatorcontrib>Blanzieri, Enrico</creatorcontrib><title>NES 2 RA: Network expansion by stratified variable subsetting and ranking aggregation</title><title>The international journal of high performance computing applications</title><description>Gene network expansion is a task of the foremost importance in computational biology. Gene network expansion aims at finding new genes to expand a given known gene network. To this end, we developed gene@home, a BOINC-based project that finds candidate genes that expand known local gene networks using NESRA. In this paper, we present NES 2 RA, a novel approach that extends and improves NESRA by modeling, using a probability vector, the confidence of the presence of the genes belonging to the local gene network. NES 2 RA adopts intensive variable-subsetting strategies, enabled by the computational power provided by gene@home volunteers. In particular, we use the skeleton procedure of the PC-algorithm to discover candidate causal relationships within each subset of variables. Finally, we use state-of-the-art aggregators to combine the results into a single ranked candidate genes list. The resulting ranking guides the discovery of unknown relations between genes and a priori known local gene networks. Our experimental results show that NES 2 RA outperforms the PC-algorithm and its order-independent PC-stable version, ARACNE, and our previous approach, NESRA. In this paper we extensively discuss the computational aspects of the NES 2 RA approach and we also present and validate expansions performed on the model plant Arabidopsis thaliana and the model bacteria Escherichia coli.</description><issn>1094-3420</issn><issn>1741-2846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpjYJAwNNAzNDQ31zc0sDQxNjEyMDQzMzMyNbBgYuA0NDcx1DWyMDFjAbKB0rogeQ4GruLiLAMDAzMTY1NOBg4_12AFI4UgRx4G1rTEnOJUXijNzWDg5hri7KGbXJRfXFyUmhZfUJSZm1hUGW9oEA-yMR7dRmMytAAAykIuLw</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Asnicar, Francesco</creator><creator>Masera, Luca</creator><creator>Coller, Emanuela</creator><creator>Gallo, Caterina</creator><creator>Sella, Nadir</creator><creator>Tolio, Thomas</creator><creator>Morettin, Paolo</creator><creator>Erculiani, Luca</creator><creator>Galante, Francesca</creator><creator>Semeniuta, Stanislau</creator><creator>Malacarne, Giulia</creator><creator>Engelen, Kristof</creator><creator>Argentini, Andrea</creator><creator>Cavecchia, Valter</creator><creator>Moser, Claudio</creator><creator>Blanzieri, Enrico</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201805</creationdate><title>NES 2 RA</title><author>Asnicar, Francesco ; Masera, Luca ; Coller, Emanuela ; Gallo, Caterina ; Sella, Nadir ; Tolio, Thomas ; Morettin, Paolo ; Erculiani, Luca ; Galante, Francesca ; Semeniuta, Stanislau ; Malacarne, Giulia ; Engelen, Kristof ; Argentini, Andrea ; Cavecchia, Valter ; Moser, Claudio ; Blanzieri, Enrico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1177_10943420166625083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asnicar, Francesco</creatorcontrib><creatorcontrib>Masera, Luca</creatorcontrib><creatorcontrib>Coller, Emanuela</creatorcontrib><creatorcontrib>Gallo, Caterina</creatorcontrib><creatorcontrib>Sella, Nadir</creatorcontrib><creatorcontrib>Tolio, Thomas</creatorcontrib><creatorcontrib>Morettin, Paolo</creatorcontrib><creatorcontrib>Erculiani, Luca</creatorcontrib><creatorcontrib>Galante, Francesca</creatorcontrib><creatorcontrib>Semeniuta, Stanislau</creatorcontrib><creatorcontrib>Malacarne, Giulia</creatorcontrib><creatorcontrib>Engelen, Kristof</creatorcontrib><creatorcontrib>Argentini, Andrea</creatorcontrib><creatorcontrib>Cavecchia, Valter</creatorcontrib><creatorcontrib>Moser, Claudio</creatorcontrib><creatorcontrib>Blanzieri, Enrico</creatorcontrib><collection>CrossRef</collection><jtitle>The international journal of high performance computing applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asnicar, Francesco</au><au>Masera, Luca</au><au>Coller, Emanuela</au><au>Gallo, Caterina</au><au>Sella, Nadir</au><au>Tolio, Thomas</au><au>Morettin, Paolo</au><au>Erculiani, Luca</au><au>Galante, Francesca</au><au>Semeniuta, Stanislau</au><au>Malacarne, Giulia</au><au>Engelen, Kristof</au><au>Argentini, Andrea</au><au>Cavecchia, Valter</au><au>Moser, Claudio</au><au>Blanzieri, Enrico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NES 2 RA: Network expansion by stratified variable subsetting and ranking aggregation</atitle><jtitle>The international journal of high performance computing applications</jtitle><date>2018-05</date><risdate>2018</risdate><volume>32</volume><issue>3</issue><spage>380</spage><epage>392</epage><pages>380-392</pages><issn>1094-3420</issn><eissn>1741-2846</eissn><abstract>Gene network expansion is a task of the foremost importance in computational biology. Gene network expansion aims at finding new genes to expand a given known gene network. To this end, we developed gene@home, a BOINC-based project that finds candidate genes that expand known local gene networks using NESRA. In this paper, we present NES 2 RA, a novel approach that extends and improves NESRA by modeling, using a probability vector, the confidence of the presence of the genes belonging to the local gene network. NES 2 RA adopts intensive variable-subsetting strategies, enabled by the computational power provided by gene@home volunteers. In particular, we use the skeleton procedure of the PC-algorithm to discover candidate causal relationships within each subset of variables. Finally, we use state-of-the-art aggregators to combine the results into a single ranked candidate genes list. The resulting ranking guides the discovery of unknown relations between genes and a priori known local gene networks. Our experimental results show that NES 2 RA outperforms the PC-algorithm and its order-independent PC-stable version, ARACNE, and our previous approach, NESRA. In this paper we extensively discuss the computational aspects of the NES 2 RA approach and we also present and validate expansions performed on the model plant Arabidopsis thaliana and the model bacteria Escherichia coli.</abstract><doi>10.1177/1094342016662508</doi></addata></record>
fulltext fulltext
identifier ISSN: 1094-3420
ispartof The international journal of high performance computing applications, 2018-05, Vol.32 (3), p.380-392
issn 1094-3420
1741-2846
language eng
recordid cdi_crossref_primary_10_1177_1094342016662508
source SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list)
title NES 2 RA: Network expansion by stratified variable subsetting and ranking aggregation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A03%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NES%202%20RA:%20Network%20expansion%20by%20stratified%20variable%20subsetting%20and%20ranking%20aggregation&rft.jtitle=The%20international%20journal%20of%20high%20performance%20computing%20applications&rft.au=Asnicar,%20Francesco&rft.date=2018-05&rft.volume=32&rft.issue=3&rft.spage=380&rft.epage=392&rft.pages=380-392&rft.issn=1094-3420&rft.eissn=1741-2846&rft_id=info:doi/10.1177/1094342016662508&rft_dat=%3Ccrossref%3E10_1177_1094342016662508%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-crossref_primary_10_1177_10943420166625083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true