Loading…
An improved parallelism scheme for deterministic discrete ordinates transport
In this paper we demonstrate techniques for increasing the node-level parallelism of a deterministic discrete ordinates neutral particle transport algorithm on a structured mesh to exploit many-core technologies. Transport calculations form a large part of the computational workload of physical simu...
Saved in:
Published in: | The International Journal of High Performance Computing Applications 2018-07, Vol.32 (4), p.555-569 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c323t-c6c49a2c1f3280e6c4f7eafba3670544be649779deac3b4acca38eb5018fd00f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c323t-c6c49a2c1f3280e6c4f7eafba3670544be649779deac3b4acca38eb5018fd00f3 |
container_end_page | 569 |
container_issue | 4 |
container_start_page | 555 |
container_title | The International Journal of High Performance Computing Applications |
container_volume | 32 |
creator | Deakin, Tom McIntosh-Smith, Simon Martineau, Matt Gaudin, Wayne |
description | In this paper we demonstrate techniques for increasing the node-level parallelism of a deterministic discrete ordinates neutral particle transport algorithm on a structured mesh to exploit many-core technologies. Transport calculations form a large part of the computational workload of physical simulations and so good performance is vital for the simulations to complete in reasonable time. We will demonstrate our approach utilizing the SNAP mini-app, which gives a simplified implementation of the full transport algorithm but remains similar enough to the real algorithm to act as a useful proxy for research purposes.
We present an OpenCL implementation of our improved algorithm which achieves a speedup of up to 2.5 × on a many-core GPGPU device compared to a state-of-the-art multi-core node for the transport sweep, and up to 4 × compared to the multi-core CPUs in the largest GPU enabled supercomputer; the first time this scale of speedup has been achieved for algorithms of this class. We then discuss ways to express our scheme in OpenMP 4.0 and demonstrate the performance on an Intel Knights Corner Xeon Phi compared to the original scheme. |
doi_str_mv | 10.1177/1094342016668978 |
format | article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1094342016668978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1094342016668978</sage_id><sourcerecordid>10.1177_1094342016668978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-c6c49a2c1f3280e6c4f7eafba3670544be649779deac3b4acca38eb5018fd00f3</originalsourceid><addsrcrecordid>eNp1UMtKxDAUDaLgOLp3mR-o3jRp0i6HwReMuNF1uU1vNENf3FTBv7fDuBJc3cd5cDhCXCu4Ucq5WwWV0SYHZa0tK1eeiJVyRmV5aezpsi9wdsDPxUVKewCwRhcr8bwZZOwnHr-olRMydh11MfUy-Q_qSYaRZUszcR-HmOboZRuT5-UjR27jgDMlOTMOaRp5vhRnAbtEV79zLd7u7163j9nu5eFpu9llXud6zrz1psLcq6DzEmi5giMMDWrroDCmIWsq56qW0OvGoPeoS2oKUGVoAYJeCzj6eh5TYgr1xLFH_q4V1Ic66r91LJLsKEn4TvV-_ORhSfg__wfPZ2Gb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An improved parallelism scheme for deterministic discrete ordinates transport</title><source>Sage Journals Online</source><creator>Deakin, Tom ; McIntosh-Smith, Simon ; Martineau, Matt ; Gaudin, Wayne</creator><creatorcontrib>Deakin, Tom ; McIntosh-Smith, Simon ; Martineau, Matt ; Gaudin, Wayne</creatorcontrib><description>In this paper we demonstrate techniques for increasing the node-level parallelism of a deterministic discrete ordinates neutral particle transport algorithm on a structured mesh to exploit many-core technologies. Transport calculations form a large part of the computational workload of physical simulations and so good performance is vital for the simulations to complete in reasonable time. We will demonstrate our approach utilizing the SNAP mini-app, which gives a simplified implementation of the full transport algorithm but remains similar enough to the real algorithm to act as a useful proxy for research purposes.
We present an OpenCL implementation of our improved algorithm which achieves a speedup of up to 2.5 × on a many-core GPGPU device compared to a state-of-the-art multi-core node for the transport sweep, and up to 4 × compared to the multi-core CPUs in the largest GPU enabled supercomputer; the first time this scale of speedup has been achieved for algorithms of this class. We then discuss ways to express our scheme in OpenMP 4.0 and demonstrate the performance on an Intel Knights Corner Xeon Phi compared to the original scheme.</description><identifier>ISSN: 1094-3420</identifier><identifier>EISSN: 1741-2846</identifier><identifier>DOI: 10.1177/1094342016668978</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>The International Journal of High Performance Computing Applications, 2018-07, Vol.32 (4), p.555-569</ispartof><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-c6c49a2c1f3280e6c4f7eafba3670544be649779deac3b4acca38eb5018fd00f3</citedby><cites>FETCH-LOGICAL-c323t-c6c49a2c1f3280e6c4f7eafba3670544be649779deac3b4acca38eb5018fd00f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>313,314,780,784,792,27922,27924,27925,79364</link.rule.ids></links><search><creatorcontrib>Deakin, Tom</creatorcontrib><creatorcontrib>McIntosh-Smith, Simon</creatorcontrib><creatorcontrib>Martineau, Matt</creatorcontrib><creatorcontrib>Gaudin, Wayne</creatorcontrib><title>An improved parallelism scheme for deterministic discrete ordinates transport</title><title>The International Journal of High Performance Computing Applications</title><description>In this paper we demonstrate techniques for increasing the node-level parallelism of a deterministic discrete ordinates neutral particle transport algorithm on a structured mesh to exploit many-core technologies. Transport calculations form a large part of the computational workload of physical simulations and so good performance is vital for the simulations to complete in reasonable time. We will demonstrate our approach utilizing the SNAP mini-app, which gives a simplified implementation of the full transport algorithm but remains similar enough to the real algorithm to act as a useful proxy for research purposes.
We present an OpenCL implementation of our improved algorithm which achieves a speedup of up to 2.5 × on a many-core GPGPU device compared to a state-of-the-art multi-core node for the transport sweep, and up to 4 × compared to the multi-core CPUs in the largest GPU enabled supercomputer; the first time this scale of speedup has been achieved for algorithms of this class. We then discuss ways to express our scheme in OpenMP 4.0 and demonstrate the performance on an Intel Knights Corner Xeon Phi compared to the original scheme.</description><issn>1094-3420</issn><issn>1741-2846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKxDAUDaLgOLp3mR-o3jRp0i6HwReMuNF1uU1vNENf3FTBv7fDuBJc3cd5cDhCXCu4Ucq5WwWV0SYHZa0tK1eeiJVyRmV5aezpsi9wdsDPxUVKewCwRhcr8bwZZOwnHr-olRMydh11MfUy-Q_qSYaRZUszcR-HmOboZRuT5-UjR27jgDMlOTMOaRp5vhRnAbtEV79zLd7u7163j9nu5eFpu9llXud6zrz1psLcq6DzEmi5giMMDWrroDCmIWsq56qW0OvGoPeoS2oKUGVoAYJeCzj6eh5TYgr1xLFH_q4V1Ic66r91LJLsKEn4TvV-_ORhSfg__wfPZ2Gb</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Deakin, Tom</creator><creator>McIntosh-Smith, Simon</creator><creator>Martineau, Matt</creator><creator>Gaudin, Wayne</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201807</creationdate><title>An improved parallelism scheme for deterministic discrete ordinates transport</title><author>Deakin, Tom ; McIntosh-Smith, Simon ; Martineau, Matt ; Gaudin, Wayne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-c6c49a2c1f3280e6c4f7eafba3670544be649779deac3b4acca38eb5018fd00f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deakin, Tom</creatorcontrib><creatorcontrib>McIntosh-Smith, Simon</creatorcontrib><creatorcontrib>Martineau, Matt</creatorcontrib><creatorcontrib>Gaudin, Wayne</creatorcontrib><collection>CrossRef</collection><jtitle>The International Journal of High Performance Computing Applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deakin, Tom</au><au>McIntosh-Smith, Simon</au><au>Martineau, Matt</au><au>Gaudin, Wayne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved parallelism scheme for deterministic discrete ordinates transport</atitle><jtitle>The International Journal of High Performance Computing Applications</jtitle><date>2018-07</date><risdate>2018</risdate><volume>32</volume><issue>4</issue><spage>555</spage><epage>569</epage><pages>555-569</pages><issn>1094-3420</issn><eissn>1741-2846</eissn><abstract>In this paper we demonstrate techniques for increasing the node-level parallelism of a deterministic discrete ordinates neutral particle transport algorithm on a structured mesh to exploit many-core technologies. Transport calculations form a large part of the computational workload of physical simulations and so good performance is vital for the simulations to complete in reasonable time. We will demonstrate our approach utilizing the SNAP mini-app, which gives a simplified implementation of the full transport algorithm but remains similar enough to the real algorithm to act as a useful proxy for research purposes.
We present an OpenCL implementation of our improved algorithm which achieves a speedup of up to 2.5 × on a many-core GPGPU device compared to a state-of-the-art multi-core node for the transport sweep, and up to 4 × compared to the multi-core CPUs in the largest GPU enabled supercomputer; the first time this scale of speedup has been achieved for algorithms of this class. We then discuss ways to express our scheme in OpenMP 4.0 and demonstrate the performance on an Intel Knights Corner Xeon Phi compared to the original scheme.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1094342016668978</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-3420 |
ispartof | The International Journal of High Performance Computing Applications, 2018-07, Vol.32 (4), p.555-569 |
issn | 1094-3420 1741-2846 |
language | eng |
recordid | cdi_crossref_primary_10_1177_1094342016668978 |
source | Sage Journals Online |
title | An improved parallelism scheme for deterministic discrete ordinates transport |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20parallelism%20scheme%20for%20deterministic%20discrete%20ordinates%20transport&rft.jtitle=The%20International%20Journal%20of%20High%20Performance%20Computing%20Applications&rft.au=Deakin,%20Tom&rft.date=2018-07&rft.volume=32&rft.issue=4&rft.spage=555&rft.epage=569&rft.pages=555-569&rft.issn=1094-3420&rft.eissn=1741-2846&rft_id=info:doi/10.1177/1094342016668978&rft_dat=%3Csage_cross%3E10.1177_1094342016668978%3C/sage_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-c6c49a2c1f3280e6c4f7eafba3670544be649779deac3b4acca38eb5018fd00f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1094342016668978&rfr_iscdi=true |