Loading…

k-Centres Functional Clustering: A Person-Centered Approach to Modeling Complex Nonlinear Growth Trajectories

In the present paper, we introduce k-centres functional clustering (k-centres FC), a person-centered method that clusters people with similar patterns of complex, highly nonlinear change over time. We review fundamentals of the methodology and argue how it addresses some of the limitations of the tr...

Full description

Saved in:
Bibliographic Details
Published in:Organizational research methods 2018-10, Vol.21 (4), p.905-930
Main Authors: Hofmans, Joeri, Vantilborgh, Tim, Solinger, Omar N.
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c266t-b104bb218dde1d1d169dee3fe2dbacc1c1e28f232df60cbda6996fee3613082e3
container_end_page 930
container_issue 4
container_start_page 905
container_title Organizational research methods
container_volume 21
creator Hofmans, Joeri
Vantilborgh, Tim
Solinger, Omar N.
description In the present paper, we introduce k-centres functional clustering (k-centres FC), a person-centered method that clusters people with similar patterns of complex, highly nonlinear change over time. We review fundamentals of the methodology and argue how it addresses some of the limitations of the traditional approaches to modeling repeated measures data. The usefulness of k-centres FC is demonstrated by applying the method to weekly measured commitment data from 109 participants who reported psychological contract breach events. The k-centres FC analysis shows two substantively meaningful clusters, the first cluster showing reaction patterns with general growth in commitment after breach and the second cluster showing general decline in commitment after breach. Further, the reaction patterns in the second cluster appear to be the result of a combination of two interesting reaction logics: immediate and delayed reactions. We conclude by outlining how future organizational research can incorporate this methodology.
doi_str_mv 10.1177/1094428117725793
format article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1094428117725793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1094428117725793</sage_id><sourcerecordid>10.1177_1094428117725793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-b104bb218dde1d1d169dee3fe2dbacc1c1e28f232df60cbda6996fee3613082e3</originalsourceid><addsrcrecordid>eNp1T01LxDAQDaLgunr35v6BaGbSps1RiusKC170HNJksnStrSTtwX9vynoS5B3mwftgHmO3IO4BquoBhC4KrBeOZaXlGVtBWSKvCizPM88yX_RLdpXSUQiQWOoVu_vgDQ1TpLTZzoObunGw_abp5zRR7IbDNbsItk9083vX7H379Nbs-P71-aV53HOHSk28BVG0LULtPYHPUNoTyUDoW-scOCCsA0r0QQnXequ0ViE7FEhRI8k1E6deF8eUIgXzFbtPG78NCLOMMn8H5gg_RZI9kDmOc8yvp__9P7r_T7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>k-Centres Functional Clustering: A Person-Centered Approach to Modeling Complex Nonlinear Growth Trajectories</title><source>BSC - Ebsco (Business Source Ultimate)</source><source>SAGE</source><creator>Hofmans, Joeri ; Vantilborgh, Tim ; Solinger, Omar N.</creator><creatorcontrib>Hofmans, Joeri ; Vantilborgh, Tim ; Solinger, Omar N.</creatorcontrib><description>In the present paper, we introduce k-centres functional clustering (k-centres FC), a person-centered method that clusters people with similar patterns of complex, highly nonlinear change over time. We review fundamentals of the methodology and argue how it addresses some of the limitations of the traditional approaches to modeling repeated measures data. The usefulness of k-centres FC is demonstrated by applying the method to weekly measured commitment data from 109 participants who reported psychological contract breach events. The k-centres FC analysis shows two substantively meaningful clusters, the first cluster showing reaction patterns with general growth in commitment after breach and the second cluster showing general decline in commitment after breach. Further, the reaction patterns in the second cluster appear to be the result of a combination of two interesting reaction logics: immediate and delayed reactions. We conclude by outlining how future organizational research can incorporate this methodology.</description><identifier>ISSN: 1094-4281</identifier><identifier>EISSN: 1552-7425</identifier><identifier>DOI: 10.1177/1094428117725793</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><ispartof>Organizational research methods, 2018-10, Vol.21 (4), p.905-930</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c266t-b104bb218dde1d1d169dee3fe2dbacc1c1e28f232df60cbda6996fee3613082e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,79111</link.rule.ids></links><search><creatorcontrib>Hofmans, Joeri</creatorcontrib><creatorcontrib>Vantilborgh, Tim</creatorcontrib><creatorcontrib>Solinger, Omar N.</creatorcontrib><title>k-Centres Functional Clustering: A Person-Centered Approach to Modeling Complex Nonlinear Growth Trajectories</title><title>Organizational research methods</title><description>In the present paper, we introduce k-centres functional clustering (k-centres FC), a person-centered method that clusters people with similar patterns of complex, highly nonlinear change over time. We review fundamentals of the methodology and argue how it addresses some of the limitations of the traditional approaches to modeling repeated measures data. The usefulness of k-centres FC is demonstrated by applying the method to weekly measured commitment data from 109 participants who reported psychological contract breach events. The k-centres FC analysis shows two substantively meaningful clusters, the first cluster showing reaction patterns with general growth in commitment after breach and the second cluster showing general decline in commitment after breach. Further, the reaction patterns in the second cluster appear to be the result of a combination of two interesting reaction logics: immediate and delayed reactions. We conclude by outlining how future organizational research can incorporate this methodology.</description><issn>1094-4281</issn><issn>1552-7425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1T01LxDAQDaLgunr35v6BaGbSps1RiusKC170HNJksnStrSTtwX9vynoS5B3mwftgHmO3IO4BquoBhC4KrBeOZaXlGVtBWSKvCizPM88yX_RLdpXSUQiQWOoVu_vgDQ1TpLTZzoObunGw_abp5zRR7IbDNbsItk9083vX7H379Nbs-P71-aV53HOHSk28BVG0LULtPYHPUNoTyUDoW-scOCCsA0r0QQnXequ0ViE7FEhRI8k1E6deF8eUIgXzFbtPG78NCLOMMn8H5gg_RZI9kDmOc8yvp__9P7r_T7g</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Hofmans, Joeri</creator><creator>Vantilborgh, Tim</creator><creator>Solinger, Omar N.</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181001</creationdate><title>k-Centres Functional Clustering</title><author>Hofmans, Joeri ; Vantilborgh, Tim ; Solinger, Omar N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-b104bb218dde1d1d169dee3fe2dbacc1c1e28f232df60cbda6996fee3613082e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hofmans, Joeri</creatorcontrib><creatorcontrib>Vantilborgh, Tim</creatorcontrib><creatorcontrib>Solinger, Omar N.</creatorcontrib><collection>CrossRef</collection><jtitle>Organizational research methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hofmans, Joeri</au><au>Vantilborgh, Tim</au><au>Solinger, Omar N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>k-Centres Functional Clustering: A Person-Centered Approach to Modeling Complex Nonlinear Growth Trajectories</atitle><jtitle>Organizational research methods</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>21</volume><issue>4</issue><spage>905</spage><epage>930</epage><pages>905-930</pages><issn>1094-4281</issn><eissn>1552-7425</eissn><abstract>In the present paper, we introduce k-centres functional clustering (k-centres FC), a person-centered method that clusters people with similar patterns of complex, highly nonlinear change over time. We review fundamentals of the methodology and argue how it addresses some of the limitations of the traditional approaches to modeling repeated measures data. The usefulness of k-centres FC is demonstrated by applying the method to weekly measured commitment data from 109 participants who reported psychological contract breach events. The k-centres FC analysis shows two substantively meaningful clusters, the first cluster showing reaction patterns with general growth in commitment after breach and the second cluster showing general decline in commitment after breach. Further, the reaction patterns in the second cluster appear to be the result of a combination of two interesting reaction logics: immediate and delayed reactions. We conclude by outlining how future organizational research can incorporate this methodology.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/1094428117725793</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4281
ispartof Organizational research methods, 2018-10, Vol.21 (4), p.905-930
issn 1094-4281
1552-7425
language eng
recordid cdi_crossref_primary_10_1177_1094428117725793
source BSC - Ebsco (Business Source Ultimate); SAGE
title k-Centres Functional Clustering: A Person-Centered Approach to Modeling Complex Nonlinear Growth Trajectories
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=k-Centres%20Functional%20Clustering:%20A%20Person-Centered%20Approach%20to%20Modeling%20Complex%20Nonlinear%20Growth%20Trajectories&rft.jtitle=Organizational%20research%20methods&rft.au=Hofmans,%20Joeri&rft.date=2018-10-01&rft.volume=21&rft.issue=4&rft.spage=905&rft.epage=930&rft.pages=905-930&rft.issn=1094-4281&rft.eissn=1552-7425&rft_id=info:doi/10.1177/1094428117725793&rft_dat=%3Csage_cross%3E10.1177_1094428117725793%3C/sage_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c266t-b104bb218dde1d1d169dee3fe2dbacc1c1e28f232df60cbda6996fee3613082e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1094428117725793&rfr_iscdi=true