Loading…
k-Centres Functional Clustering: A Person-Centered Approach to Modeling Complex Nonlinear Growth Trajectories
In the present paper, we introduce k-centres functional clustering (k-centres FC), a person-centered method that clusters people with similar patterns of complex, highly nonlinear change over time. We review fundamentals of the methodology and argue how it addresses some of the limitations of the tr...
Saved in:
Published in: | Organizational research methods 2018-10, Vol.21 (4), p.905-930 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c266t-b104bb218dde1d1d169dee3fe2dbacc1c1e28f232df60cbda6996fee3613082e3 |
container_end_page | 930 |
container_issue | 4 |
container_start_page | 905 |
container_title | Organizational research methods |
container_volume | 21 |
creator | Hofmans, Joeri Vantilborgh, Tim Solinger, Omar N. |
description | In the present paper, we introduce k-centres functional clustering (k-centres FC), a person-centered method that clusters people with similar patterns of complex, highly nonlinear change over time. We review fundamentals of the methodology and argue how it addresses some of the limitations of the traditional approaches to modeling repeated measures data. The usefulness of k-centres FC is demonstrated by applying the method to weekly measured commitment data from 109 participants who reported psychological contract breach events. The k-centres FC analysis shows two substantively meaningful clusters, the first cluster showing reaction patterns with general growth in commitment after breach and the second cluster showing general decline in commitment after breach. Further, the reaction patterns in the second cluster appear to be the result of a combination of two interesting reaction logics: immediate and delayed reactions. We conclude by outlining how future organizational research can incorporate this methodology. |
doi_str_mv | 10.1177/1094428117725793 |
format | article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1094428117725793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1094428117725793</sage_id><sourcerecordid>10.1177_1094428117725793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-b104bb218dde1d1d169dee3fe2dbacc1c1e28f232df60cbda6996fee3613082e3</originalsourceid><addsrcrecordid>eNp1T01LxDAQDaLgunr35v6BaGbSps1RiusKC170HNJksnStrSTtwX9vynoS5B3mwftgHmO3IO4BquoBhC4KrBeOZaXlGVtBWSKvCizPM88yX_RLdpXSUQiQWOoVu_vgDQ1TpLTZzoObunGw_abp5zRR7IbDNbsItk9083vX7H379Nbs-P71-aV53HOHSk28BVG0LULtPYHPUNoTyUDoW-scOCCsA0r0QQnXequ0ViE7FEhRI8k1E6deF8eUIgXzFbtPG78NCLOMMn8H5gg_RZI9kDmOc8yvp__9P7r_T7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>k-Centres Functional Clustering: A Person-Centered Approach to Modeling Complex Nonlinear Growth Trajectories</title><source>BSC - Ebsco (Business Source Ultimate)</source><source>SAGE</source><creator>Hofmans, Joeri ; Vantilborgh, Tim ; Solinger, Omar N.</creator><creatorcontrib>Hofmans, Joeri ; Vantilborgh, Tim ; Solinger, Omar N.</creatorcontrib><description>In the present paper, we introduce k-centres functional clustering (k-centres FC), a person-centered method that clusters people with similar patterns of complex, highly nonlinear change over time. We review fundamentals of the methodology and argue how it addresses some of the limitations of the traditional approaches to modeling repeated measures data. The usefulness of k-centres FC is demonstrated by applying the method to weekly measured commitment data from 109 participants who reported psychological contract breach events. The k-centres FC analysis shows two substantively meaningful clusters, the first cluster showing reaction patterns with general growth in commitment after breach and the second cluster showing general decline in commitment after breach. Further, the reaction patterns in the second cluster appear to be the result of a combination of two interesting reaction logics: immediate and delayed reactions. We conclude by outlining how future organizational research can incorporate this methodology.</description><identifier>ISSN: 1094-4281</identifier><identifier>EISSN: 1552-7425</identifier><identifier>DOI: 10.1177/1094428117725793</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><ispartof>Organizational research methods, 2018-10, Vol.21 (4), p.905-930</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c266t-b104bb218dde1d1d169dee3fe2dbacc1c1e28f232df60cbda6996fee3613082e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,79111</link.rule.ids></links><search><creatorcontrib>Hofmans, Joeri</creatorcontrib><creatorcontrib>Vantilborgh, Tim</creatorcontrib><creatorcontrib>Solinger, Omar N.</creatorcontrib><title>k-Centres Functional Clustering: A Person-Centered Approach to Modeling Complex Nonlinear Growth Trajectories</title><title>Organizational research methods</title><description>In the present paper, we introduce k-centres functional clustering (k-centres FC), a person-centered method that clusters people with similar patterns of complex, highly nonlinear change over time. We review fundamentals of the methodology and argue how it addresses some of the limitations of the traditional approaches to modeling repeated measures data. The usefulness of k-centres FC is demonstrated by applying the method to weekly measured commitment data from 109 participants who reported psychological contract breach events. The k-centres FC analysis shows two substantively meaningful clusters, the first cluster showing reaction patterns with general growth in commitment after breach and the second cluster showing general decline in commitment after breach. Further, the reaction patterns in the second cluster appear to be the result of a combination of two interesting reaction logics: immediate and delayed reactions. We conclude by outlining how future organizational research can incorporate this methodology.</description><issn>1094-4281</issn><issn>1552-7425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1T01LxDAQDaLgunr35v6BaGbSps1RiusKC170HNJksnStrSTtwX9vynoS5B3mwftgHmO3IO4BquoBhC4KrBeOZaXlGVtBWSKvCizPM88yX_RLdpXSUQiQWOoVu_vgDQ1TpLTZzoObunGw_abp5zRR7IbDNbsItk9083vX7H379Nbs-P71-aV53HOHSk28BVG0LULtPYHPUNoTyUDoW-scOCCsA0r0QQnXequ0ViE7FEhRI8k1E6deF8eUIgXzFbtPG78NCLOMMn8H5gg_RZI9kDmOc8yvp__9P7r_T7g</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Hofmans, Joeri</creator><creator>Vantilborgh, Tim</creator><creator>Solinger, Omar N.</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181001</creationdate><title>k-Centres Functional Clustering</title><author>Hofmans, Joeri ; Vantilborgh, Tim ; Solinger, Omar N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-b104bb218dde1d1d169dee3fe2dbacc1c1e28f232df60cbda6996fee3613082e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hofmans, Joeri</creatorcontrib><creatorcontrib>Vantilborgh, Tim</creatorcontrib><creatorcontrib>Solinger, Omar N.</creatorcontrib><collection>CrossRef</collection><jtitle>Organizational research methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hofmans, Joeri</au><au>Vantilborgh, Tim</au><au>Solinger, Omar N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>k-Centres Functional Clustering: A Person-Centered Approach to Modeling Complex Nonlinear Growth Trajectories</atitle><jtitle>Organizational research methods</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>21</volume><issue>4</issue><spage>905</spage><epage>930</epage><pages>905-930</pages><issn>1094-4281</issn><eissn>1552-7425</eissn><abstract>In the present paper, we introduce k-centres functional clustering (k-centres FC), a person-centered method that clusters people with similar patterns of complex, highly nonlinear change over time. We review fundamentals of the methodology and argue how it addresses some of the limitations of the traditional approaches to modeling repeated measures data. The usefulness of k-centres FC is demonstrated by applying the method to weekly measured commitment data from 109 participants who reported psychological contract breach events. The k-centres FC analysis shows two substantively meaningful clusters, the first cluster showing reaction patterns with general growth in commitment after breach and the second cluster showing general decline in commitment after breach. Further, the reaction patterns in the second cluster appear to be the result of a combination of two interesting reaction logics: immediate and delayed reactions. We conclude by outlining how future organizational research can incorporate this methodology.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/1094428117725793</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4281 |
ispartof | Organizational research methods, 2018-10, Vol.21 (4), p.905-930 |
issn | 1094-4281 1552-7425 |
language | eng |
recordid | cdi_crossref_primary_10_1177_1094428117725793 |
source | BSC - Ebsco (Business Source Ultimate); SAGE |
title | k-Centres Functional Clustering: A Person-Centered Approach to Modeling Complex Nonlinear Growth Trajectories |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=k-Centres%20Functional%20Clustering:%20A%20Person-Centered%20Approach%20to%20Modeling%20Complex%20Nonlinear%20Growth%20Trajectories&rft.jtitle=Organizational%20research%20methods&rft.au=Hofmans,%20Joeri&rft.date=2018-10-01&rft.volume=21&rft.issue=4&rft.spage=905&rft.epage=930&rft.pages=905-930&rft.issn=1094-4281&rft.eissn=1552-7425&rft_id=info:doi/10.1177/1094428117725793&rft_dat=%3Csage_cross%3E10.1177_1094428117725793%3C/sage_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c266t-b104bb218dde1d1d169dee3fe2dbacc1c1e28f232df60cbda6996fee3613082e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1094428117725793&rfr_iscdi=true |