Loading…

Nonlinear dynamic response and vibration of imperfect eccentrically stiffened sandwich third-order shear deformable FGM cylindrical panels in thermal environments

This study follows an analytical approach to investigate the nonlinear dynamic response and vibration of eccentrically stiffened sandwich functionally graded material (FGM) cylindrical panels with metal–ceramic layers on elastic foundations in thermal environments. It is assumed that the FGM cylindr...

Full description

Saved in:
Bibliographic Details
Published in:The journal of sandwich structures & materials 2019-11, Vol.21 (8), p.2816-2845
Main Authors: Duc, Nguyen D, Tuan, Ngo Duc, Tran, Phuong, Quan, Tran Q, Van Thanh, Nguyen
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study follows an analytical approach to investigate the nonlinear dynamic response and vibration of eccentrically stiffened sandwich functionally graded material (FGM) cylindrical panels with metal–ceramic layers on elastic foundations in thermal environments. It is assumed that the FGM cylindrical panel is reinforced by the eccentrically longitudinal and transversal stiffeners and subjected to mechanical and thermal loads. The material properties are assumed to be temperature dependent and graded in the thickness direction according to a simple power law distribution. Based on the Reddy’s third-order shear deformation shell theory, the motion and compatibility equations are derived taking into account geometrical nonlinearity and Pasternak-type elastic foundations. The outstanding feature of this study is that both FGM cylindrical panel and stiffeners are assumed to be deformed in the presence of temperature. Explicit relation of deflection–time curves and frequencies of FGM cylindrical panel are determined by applying stress function, Galerkin method and fourth-order Runge-Kutta method. The influences of material and geometrical parameters, elastic foundations and stiffeners on the nonlinear dynamic and vibration of the sandwich FGM panels are discussed in detail. The obtained results are validated by comparing with other results in the literature.
ISSN:1099-6362
1530-7972
DOI:10.1177/1099636217725251