Loading…
Vertically-aligned short E-glass fibre core sandwich composite: Production and evaluation
This paper reports on the production and evaluation of a new class of “Z-axis” composite sandwich panel where the core consists of a dense array of vertically-aligned, 3 mm long E-glass fibre composite “beams”. The E-glass fibre bundles were aligned using electrostatic charging. A procedure was deve...
Saved in:
Published in: | The journal of sandwich structures & materials 2022-01, Vol.24 (1), p.174-200 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper reports on the production and evaluation of a new class of “Z-axis” composite sandwich panel where the core consists of a dense array of vertically-aligned, 3 mm long E-glass fibre composite “beams”. The E-glass fibre bundles were aligned using electrostatic charging. A procedure was developed to retain the orientation of the short-fibre bundles whilst they were impregnated and cured with an epoxy/amine resin system. The skins were manufactured from 4-ply carbon/epoxy prepregs with a layup sequence of (0,90)s. The out-of-plane compressive strength of these Z-axis composites was found to be 25.2 and 15.2 times greater than equivalent sandwich panels made with Nomex® and aluminium honeycomb cores respectively. Their compressive strength was found to increase in proportion to the density of the core. Buckling and fracture of the vertically-aligned Z-axis composite were the predominant failure modes observed. The shear and flexural properties of the Z-axis composites were comparable to equivalent honeycomb sandwich panels manufactured from Nomex® and aluminium honeycomb cores. |
---|---|
ISSN: | 1099-6362 1530-7972 |
DOI: | 10.1177/1099636221993883 |