Loading…

Moment redistribution in cold-formed steel sleeved and overlapped two-span purlin systems

Cold-formed steel purlin systems with overlapped or sleeved connections are alternatives to continuous two-span systems and exhibit different degrees of continuity. Both connection types are highly favourable in practice since they are both strategically placed over an interior support to provide ad...

Full description

Saved in:
Bibliographic Details
Published in:Advances in structural engineering 2018-12, Vol.21 (16), p.2534-2552
Main Authors: Kyvelou, Pinelopi, Hui, Chi, Gardner, Leroy, Nethercot, David A
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cold-formed steel purlin systems with overlapped or sleeved connections are alternatives to continuous two-span systems and exhibit different degrees of continuity. Both connection types are highly favourable in practice since they are both strategically placed over an interior support to provide additional moment resistance and rotational capacity where the corresponding demands are at their largest, thus improving the overall structural efficiency. Until recently, full-scale testing has been the most common way of investigating the structural behaviour of such systems. In this study, numerical modelling, capable of capturing the complex contact interactions and instability phenomena, is employed. The developed finite element models are first validated against data from physical tests on cold-formed steel beams featuring sleeved and overlapped connections that have been previously reported in the literature. Following their validation, the models are employed for parametric studies, based on which the structural behaviour of the examined systems is explored, while the applicability of conventional plastic design as well as of a previously proposed design approach is investigated. Finally, the efficiency of these systems in terms of load-carrying capacity is compared with their equivalent continuous two-span systems.
ISSN:1369-4332
2048-4011
DOI:10.1177/1369433218774958