Loading…

Nonlinear hysteretic parameter identification using improved artificial bee colony algorithm

Hysteresis is a common phenomenon arising in many engineering applications. It describes a memory-based relation between the restoring force and the displacement. Identification of the hysteretic parameters is central to practical application of the hysteretic models. To proceed so, a noteworthy thi...

Full description

Saved in:
Bibliographic Details
Published in:Advances in structural engineering 2021-10, Vol.24 (14), p.3156-3170
Main Authors: Yao, Renzhi, Chen, Yanmao, Wang, Li, Lu, Zhongrong
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c284t-6a07f2bddca778c438f9425753183cfe81076cc4cfd5c1ce008bf720d2552df3
cites cdi_FETCH-LOGICAL-c284t-6a07f2bddca778c438f9425753183cfe81076cc4cfd5c1ce008bf720d2552df3
container_end_page 3170
container_issue 14
container_start_page 3156
container_title Advances in structural engineering
container_volume 24
creator Yao, Renzhi
Chen, Yanmao
Wang, Li
Lu, Zhongrong
description Hysteresis is a common phenomenon arising in many engineering applications. It describes a memory-based relation between the restoring force and the displacement. Identification of the hysteretic parameters is central to practical application of the hysteretic models. To proceed so, a noteworthy thing is that the hysteretic models are often complex and non-differentiable so that getting the gradients is never straightforward and therefore, the swarm-based algorithm is often preferable to inverse hysteretic parameter identification. Along these lines, an improved artificial bee colony algorithm is developed in this paper for general hysteretic parameter identification. On the one hand, several hysteretic models along with the extensions to tackle the degradation and pinching behaviours are considered and how to model a structure with hysteretic components is also elaborated. As a result, the governing equation for the direct problem is established. On the other hand, the differential evolution mechanism is introduced to improve the original artificial bee colony algorithm. Numerical examples are conducted to testify the feasibility and accuracy of the proposed method in nonlinear hysteretic parameter identification.
doi_str_mv 10.1177/13694332211020405
format article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_13694332211020405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_13694332211020405</sage_id><sourcerecordid>10.1177_13694332211020405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-6a07f2bddca778c438f9425753183cfe81076cc4cfd5c1ce008bf720d2552df3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsP4C4vMDU3yTTpUop_UHTTpTCkyU2bMpOUZCrM2zu17gRXh8u53-FwCLkHNgNQ6gHEfCGF4ByAcSZZfUEmo-pKMoBLMjn51enhmtyUsmcMuFIwIZ_vKbYhosl0N5QeM_bB0oPJpsPxosFh7IMP1vQhRXosIW5p6A45faGjJv94wbR0g0htalMcqGm3KYd-192SK2_agne_OiXr56f18rVafby8LR9XleVa9tXcMOX5xjlrlNJWCu0XkteqFqCF9aiBqbm10npXW7DImN54xZnjdc2dF1MC51ibUykZfXPIoTN5aIA1p3WaP-uMzOzMFLPFZp-OOY4N_wG-AWs1Zto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonlinear hysteretic parameter identification using improved artificial bee colony algorithm</title><source>SAGE</source><creator>Yao, Renzhi ; Chen, Yanmao ; Wang, Li ; Lu, Zhongrong</creator><creatorcontrib>Yao, Renzhi ; Chen, Yanmao ; Wang, Li ; Lu, Zhongrong</creatorcontrib><description>Hysteresis is a common phenomenon arising in many engineering applications. It describes a memory-based relation between the restoring force and the displacement. Identification of the hysteretic parameters is central to practical application of the hysteretic models. To proceed so, a noteworthy thing is that the hysteretic models are often complex and non-differentiable so that getting the gradients is never straightforward and therefore, the swarm-based algorithm is often preferable to inverse hysteretic parameter identification. Along these lines, an improved artificial bee colony algorithm is developed in this paper for general hysteretic parameter identification. On the one hand, several hysteretic models along with the extensions to tackle the degradation and pinching behaviours are considered and how to model a structure with hysteretic components is also elaborated. As a result, the governing equation for the direct problem is established. On the other hand, the differential evolution mechanism is introduced to improve the original artificial bee colony algorithm. Numerical examples are conducted to testify the feasibility and accuracy of the proposed method in nonlinear hysteretic parameter identification.</description><identifier>ISSN: 1369-4332</identifier><identifier>EISSN: 2048-4011</identifier><identifier>DOI: 10.1177/13694332211020405</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Advances in structural engineering, 2021-10, Vol.24 (14), p.3156-3170</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-6a07f2bddca778c438f9425753183cfe81076cc4cfd5c1ce008bf720d2552df3</citedby><cites>FETCH-LOGICAL-c284t-6a07f2bddca778c438f9425753183cfe81076cc4cfd5c1ce008bf720d2552df3</cites><orcidid>0000-0001-7611-6446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids></links><search><creatorcontrib>Yao, Renzhi</creatorcontrib><creatorcontrib>Chen, Yanmao</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Lu, Zhongrong</creatorcontrib><title>Nonlinear hysteretic parameter identification using improved artificial bee colony algorithm</title><title>Advances in structural engineering</title><description>Hysteresis is a common phenomenon arising in many engineering applications. It describes a memory-based relation between the restoring force and the displacement. Identification of the hysteretic parameters is central to practical application of the hysteretic models. To proceed so, a noteworthy thing is that the hysteretic models are often complex and non-differentiable so that getting the gradients is never straightforward and therefore, the swarm-based algorithm is often preferable to inverse hysteretic parameter identification. Along these lines, an improved artificial bee colony algorithm is developed in this paper for general hysteretic parameter identification. On the one hand, several hysteretic models along with the extensions to tackle the degradation and pinching behaviours are considered and how to model a structure with hysteretic components is also elaborated. As a result, the governing equation for the direct problem is established. On the other hand, the differential evolution mechanism is introduced to improve the original artificial bee colony algorithm. Numerical examples are conducted to testify the feasibility and accuracy of the proposed method in nonlinear hysteretic parameter identification.</description><issn>1369-4332</issn><issn>2048-4011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsP4C4vMDU3yTTpUop_UHTTpTCkyU2bMpOUZCrM2zu17gRXh8u53-FwCLkHNgNQ6gHEfCGF4ByAcSZZfUEmo-pKMoBLMjn51enhmtyUsmcMuFIwIZ_vKbYhosl0N5QeM_bB0oPJpsPxosFh7IMP1vQhRXosIW5p6A45faGjJv94wbR0g0htalMcqGm3KYd-192SK2_agne_OiXr56f18rVafby8LR9XleVa9tXcMOX5xjlrlNJWCu0XkteqFqCF9aiBqbm10npXW7DImN54xZnjdc2dF1MC51ibUykZfXPIoTN5aIA1p3WaP-uMzOzMFLPFZp-OOY4N_wG-AWs1Zto</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Yao, Renzhi</creator><creator>Chen, Yanmao</creator><creator>Wang, Li</creator><creator>Lu, Zhongrong</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7611-6446</orcidid></search><sort><creationdate>20211001</creationdate><title>Nonlinear hysteretic parameter identification using improved artificial bee colony algorithm</title><author>Yao, Renzhi ; Chen, Yanmao ; Wang, Li ; Lu, Zhongrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-6a07f2bddca778c438f9425753183cfe81076cc4cfd5c1ce008bf720d2552df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Renzhi</creatorcontrib><creatorcontrib>Chen, Yanmao</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Lu, Zhongrong</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in structural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Renzhi</au><au>Chen, Yanmao</au><au>Wang, Li</au><au>Lu, Zhongrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear hysteretic parameter identification using improved artificial bee colony algorithm</atitle><jtitle>Advances in structural engineering</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>24</volume><issue>14</issue><spage>3156</spage><epage>3170</epage><pages>3156-3170</pages><issn>1369-4332</issn><eissn>2048-4011</eissn><abstract>Hysteresis is a common phenomenon arising in many engineering applications. It describes a memory-based relation between the restoring force and the displacement. Identification of the hysteretic parameters is central to practical application of the hysteretic models. To proceed so, a noteworthy thing is that the hysteretic models are often complex and non-differentiable so that getting the gradients is never straightforward and therefore, the swarm-based algorithm is often preferable to inverse hysteretic parameter identification. Along these lines, an improved artificial bee colony algorithm is developed in this paper for general hysteretic parameter identification. On the one hand, several hysteretic models along with the extensions to tackle the degradation and pinching behaviours are considered and how to model a structure with hysteretic components is also elaborated. As a result, the governing equation for the direct problem is established. On the other hand, the differential evolution mechanism is introduced to improve the original artificial bee colony algorithm. Numerical examples are conducted to testify the feasibility and accuracy of the proposed method in nonlinear hysteretic parameter identification.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/13694332211020405</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7611-6446</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1369-4332
ispartof Advances in structural engineering, 2021-10, Vol.24 (14), p.3156-3170
issn 1369-4332
2048-4011
language eng
recordid cdi_crossref_primary_10_1177_13694332211020405
source SAGE
title Nonlinear hysteretic parameter identification using improved artificial bee colony algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20hysteretic%20parameter%20identification%20using%20improved%20artificial%20bee%20colony%20algorithm&rft.jtitle=Advances%20in%20structural%20engineering&rft.au=Yao,%20Renzhi&rft.date=2021-10-01&rft.volume=24&rft.issue=14&rft.spage=3156&rft.epage=3170&rft.pages=3156-3170&rft.issn=1369-4332&rft.eissn=2048-4011&rft_id=info:doi/10.1177/13694332211020405&rft_dat=%3Csage_cross%3E10.1177_13694332211020405%3C/sage_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c284t-6a07f2bddca778c438f9425753183cfe81076cc4cfd5c1ce008bf720d2552df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_13694332211020405&rfr_iscdi=true