Loading…

Post-fire performance of steel reinforced concrete columns with different steel sections

This study investigates the post-fire performance of steel reinforced concrete composite (SRC) columns used in building construction using experimental compression tests. Four conventional steel sections as I-shaped, Cross, Box, and Plus were considered as the steel core. For fire loading, all fabri...

Full description

Saved in:
Bibliographic Details
Published in:Advances in structural engineering 2021-12, Vol.24 (16), p.3724-3738
Main Authors: Hassani, Meisam, Safi, Mohammad, Rasti Ardakani, Reza, Saedi Daryan, Amir
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates the post-fire performance of steel reinforced concrete composite (SRC) columns used in building construction using experimental compression tests. Four conventional steel sections as I-shaped, Cross, Box, and Plus were considered as the steel core. For fire loading, all fabricated columns were subjected to five target temperatures, including 25°, 250°, 500°, 700°, and 900°C, and then the cooling phase of the columns was done under natural conditions. Then using pressure jacks, the compressive behavior including strength and axial deformation of each of them was measured, and force-deformation curves were plotted and investigated for each SRC column. The results of these tests showed that the compressive strength and the elasticity modulus of the columns decrease at higher temperatures. Also, the effect of the steel core was examined on the compressive strength. Among the tested sections, SRC columns with the Box-steel core showed a more recovery in its compressive strength and elasticity modulus, and hence, its performance was better than SRC columns with the other steel cores. Moreover, SRC columns with the Plus-steel core indicated the weakest compressive strength and elasticity modulus. Finally, some equations were proposed for the prediction of the compressive strength and elasticity modulus of SRC columns at different temperatures by applying gene expression programming (GEP modeling) to the results.
ISSN:1369-4332
2048-4011
DOI:10.1177/13694332211036958