Loading…

A highly active K/Cu-Mn-O catalyst for the removal of nitric oxide in indoor air

Nitric oxide is a frequently encountered pollutant in indoor air. It could have a number of harmful effects on human health even at low concentration. Aiming to improve the indoor air quality, an environment-friendly method was developed for the elimination of nitric oxide at ppm level based on a lo...

Full description

Saved in:
Bibliographic Details
Published in:Indoor + built environment 2019-01, Vol.28 (1), p.7-16
Main Authors: Wang, Chan, Li, Feng, Sun, Zishu, Song, Qijun
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nitric oxide is a frequently encountered pollutant in indoor air. It could have a number of harmful effects on human health even at low concentration. Aiming to improve the indoor air quality, an environment-friendly method was developed for the elimination of nitric oxide at ppm level based on a low temperature effective catalyst potassium-doped copper–manganese oxide (K/Cu-Mn-O). The catalyst was obtained through a co-precipitation method using metal nitrates in aqueous solution and the precipitate was calcinated at 400℃ for 5 h. After impregnation with K, the best catalytic activity was observed for the K/Cu-Mn-O catalyst with a Cu/Mn ratio of 1:2 and surface concentration of doping K 7.03% (7.4 mg/g). The composition and the structure of the catalyst were comprehensively characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and Brunauer–Emmett–Teller. The results showed that the potassium doping improved the adsorption ability of catalyst, and promoted the formation of the nitrate salt, and thereby further improved the elimination rate of nitric oxide. Finally, the possible reaction mechanisms are discussed.
ISSN:1420-326X
1423-0070
DOI:10.1177/1420326X17728153