Loading…

Reconstruction of Vertebral Bone Defects using an Expandable Replacement Device and Bioactive Glass S53P4 in the Treatment of Vertebral Osteomyelitis: Three Patients and Three Pathogens

Background and Aims: Bioactive glass S53P4 is an antibacterial bone substitute with bone-bonding and osteostimulative properties. The bone substitute has been successfully used clinically in spine; trauma; orthopedic; ear, nose, and throat; and cranio-maxillofacial surgeries. Bioactive glass S53P4 s...

Full description

Saved in:
Bibliographic Details
Published in:Scandinavian journal of surgery 2016-12, Vol.105 (4), p.248-253
Main Authors: Kankare, J., Lindfors, N. C.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background and Aims: Bioactive glass S53P4 is an antibacterial bone substitute with bone-bonding and osteostimulative properties. The bone substitute has been successfully used clinically in spine; trauma; orthopedic; ear, nose, and throat; and cranio-maxillofacial surgeries. Bioactive glass S53P4 significantly reduces the amount of bacteria in vitro and possesses the capacity to kill both planktonic bacteria and bacteria in biofilm. Three patients with severe spondylodiscitis caused by Mycobacterium tuberculosis, Candida tropicalis, or Staphylococcus aureus were operatively treated due to failed conservative treatment. The vertebral defects were reconstructed using bioactive glass S53P4 and an expandable replacement device. Material and Methods: Decompression and a posterolateral spondylodesis, using transpedicular fixation, were performed posteriorly in combination with an anterior decompression and reconstruction using an expandable vertebral body replacement device. For patients 1 and 2, the expander was covered with bioactive glass S53P4 only, and for patient 3, the glass was mixed with autograft bone. Results: The patients healed well with complete neurological recovery. Fusion was observed for all patients. The total follow-up was 4 years for patient 1, 1 year and 8 months for patient 2, and 2 years and 2 months for patient 3. No relapses or complications were observed. Conclusion: The antibacterial properties of bioactive glass S53P4 also make it a suitable bone substitute in the treatment of severe spondylodiscitis.
ISSN:1457-4969
1799-7267
DOI:10.1177/1457496915626834