Loading…
Extended Poisson–Tweedie: Properties and regression models for count data
We propose a new class of discrete generalized linear models based on the class of Poisson–Tweedie factorial dispersion models with variance of the form μ + ϕ μ p , where μ is the mean and ϕ and p are the dispersion and Tweedie power parameters, respectively. The models are fitted by using an estima...
Saved in:
Published in: | Statistical modelling 2018-02, Vol.18 (1), p.24-49 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c389t-6a2a6aa1073e432d91c0b927ce846323eb7b19bbebcb5c1430743209e1c7da2c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-6a2a6aa1073e432d91c0b927ce846323eb7b19bbebcb5c1430743209e1c7da2c3 |
container_end_page | 49 |
container_issue | 1 |
container_start_page | 24 |
container_title | Statistical modelling |
container_volume | 18 |
creator | Bonat, Wagner H. Jørgensen, Bent Kokonendji, Célestin C. Hinde, John Demétrio, Clarice G. B. |
description | We propose a new class of discrete generalized linear models based on the class of Poisson–Tweedie factorial dispersion models with variance of the form
μ
+
ϕ
μ
p
, where
μ
is the mean and
ϕ
and
p
are the dispersion and Tweedie power parameters, respectively. The models are fitted by using an estimating function approach obtained by combining the quasi-score and Pearson estimating functions for the estimation of the regression and dispersion parameters, respectively. This provides a flexible and efficient regression methodology for a comprehensive family of count models including Hermite, Neyman Type A, Pólya–Aeppli, negative binomial and Poisson-inverse Gaussian. The estimating function approach allows us to extend the Poisson–Tweedie distributions to deal with underdispersed count data by allowing negative values for the dispersion parameter
ϕ
. Furthermore, the Poisson–Tweedie family can automatically adapt to highly skewed count data with excessive zeros, without the need to introduce zero-inflated or hurdle components, by the simple estimation of the power parameter. Thus, the proposed models offer a unified framework to deal with under-, equi-, overdispersed, zero-inflated and heavy-tailed count data. The computational implementation of the proposed models is fast, relying only on a simple Newton scoring algorithm. Simulation studies showed that the estimating function approach provides unbiased and consistent estimators for both regression and dispersion parameters. We highlight the ability of the Poisson–Tweedie distributions to deal with count data through a consideration of dispersion, zero-inflated and heavy tail indices, and illustrate its application with four data analyses. We provide an R implementation and the datasets as supplementary materials. |
doi_str_mv | 10.1177/1471082X17715718 |
format | article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1471082X17715718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1471082X17715718</sage_id><sourcerecordid>10.1177_1471082X17715718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-6a2a6aa1073e432d91c0b927ce846323eb7b19bbebcb5c1430743209e1c7da2c3</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgre5d5geiucl0MnEnpVqxYBcV3A153ClT2qQkU9Sd_-Af-iVOrSvB1T3c8-BwCLkEfgWg1DUUCnglXnoMIwXVERn0L8W4LMTxDwa250_JWc4rzgWoUg_I4-Stw-DR03lsc47h6-Nz8YroW7yh8xS3mLoWMzXB04TLhDm3MdBN9LjOtImJurgLHfWmM-fkpDHrjBe_d0ie7yaL8ZTNnu4fxrcz5mSlO1YaYUpjgCuJhRReg-NWC-WwKkopJFplQVuL1tmRg0Jy1cu4RnDKG-HkkPBDrksx54RNvU3txqT3Gni9H6P-O0ZvYQdLNkusV3GXQt_wf_03FX1gnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extended Poisson–Tweedie: Properties and regression models for count data</title><source>SAGE</source><creator>Bonat, Wagner H. ; Jørgensen, Bent ; Kokonendji, Célestin C. ; Hinde, John ; Demétrio, Clarice G. B.</creator><creatorcontrib>Bonat, Wagner H. ; Jørgensen, Bent ; Kokonendji, Célestin C. ; Hinde, John ; Demétrio, Clarice G. B.</creatorcontrib><description>We propose a new class of discrete generalized linear models based on the class of Poisson–Tweedie factorial dispersion models with variance of the form
μ
+
ϕ
μ
p
, where
μ
is the mean and
ϕ
and
p
are the dispersion and Tweedie power parameters, respectively. The models are fitted by using an estimating function approach obtained by combining the quasi-score and Pearson estimating functions for the estimation of the regression and dispersion parameters, respectively. This provides a flexible and efficient regression methodology for a comprehensive family of count models including Hermite, Neyman Type A, Pólya–Aeppli, negative binomial and Poisson-inverse Gaussian. The estimating function approach allows us to extend the Poisson–Tweedie distributions to deal with underdispersed count data by allowing negative values for the dispersion parameter
ϕ
. Furthermore, the Poisson–Tweedie family can automatically adapt to highly skewed count data with excessive zeros, without the need to introduce zero-inflated or hurdle components, by the simple estimation of the power parameter. Thus, the proposed models offer a unified framework to deal with under-, equi-, overdispersed, zero-inflated and heavy-tailed count data. The computational implementation of the proposed models is fast, relying only on a simple Newton scoring algorithm. Simulation studies showed that the estimating function approach provides unbiased and consistent estimators for both regression and dispersion parameters. We highlight the ability of the Poisson–Tweedie distributions to deal with count data through a consideration of dispersion, zero-inflated and heavy tail indices, and illustrate its application with four data analyses. We provide an R implementation and the datasets as supplementary materials.</description><identifier>ISSN: 1471-082X</identifier><identifier>EISSN: 1477-0342</identifier><identifier>DOI: 10.1177/1471082X17715718</identifier><language>eng</language><publisher>New Delhi, India: SAGE Publications</publisher><ispartof>Statistical modelling, 2018-02, Vol.18 (1), p.24-49</ispartof><rights>2018 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-6a2a6aa1073e432d91c0b927ce846323eb7b19bbebcb5c1430743209e1c7da2c3</citedby><cites>FETCH-LOGICAL-c389t-6a2a6aa1073e432d91c0b927ce846323eb7b19bbebcb5c1430743209e1c7da2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids></links><search><creatorcontrib>Bonat, Wagner H.</creatorcontrib><creatorcontrib>Jørgensen, Bent</creatorcontrib><creatorcontrib>Kokonendji, Célestin C.</creatorcontrib><creatorcontrib>Hinde, John</creatorcontrib><creatorcontrib>Demétrio, Clarice G. B.</creatorcontrib><title>Extended Poisson–Tweedie: Properties and regression models for count data</title><title>Statistical modelling</title><description>We propose a new class of discrete generalized linear models based on the class of Poisson–Tweedie factorial dispersion models with variance of the form
μ
+
ϕ
μ
p
, where
μ
is the mean and
ϕ
and
p
are the dispersion and Tweedie power parameters, respectively. The models are fitted by using an estimating function approach obtained by combining the quasi-score and Pearson estimating functions for the estimation of the regression and dispersion parameters, respectively. This provides a flexible and efficient regression methodology for a comprehensive family of count models including Hermite, Neyman Type A, Pólya–Aeppli, negative binomial and Poisson-inverse Gaussian. The estimating function approach allows us to extend the Poisson–Tweedie distributions to deal with underdispersed count data by allowing negative values for the dispersion parameter
ϕ
. Furthermore, the Poisson–Tweedie family can automatically adapt to highly skewed count data with excessive zeros, without the need to introduce zero-inflated or hurdle components, by the simple estimation of the power parameter. Thus, the proposed models offer a unified framework to deal with under-, equi-, overdispersed, zero-inflated and heavy-tailed count data. The computational implementation of the proposed models is fast, relying only on a simple Newton scoring algorithm. Simulation studies showed that the estimating function approach provides unbiased and consistent estimators for both regression and dispersion parameters. We highlight the ability of the Poisson–Tweedie distributions to deal with count data through a consideration of dispersion, zero-inflated and heavy tail indices, and illustrate its application with four data analyses. We provide an R implementation and the datasets as supplementary materials.</description><issn>1471-082X</issn><issn>1477-0342</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgre5d5geiucl0MnEnpVqxYBcV3A153ClT2qQkU9Sd_-Af-iVOrSvB1T3c8-BwCLkEfgWg1DUUCnglXnoMIwXVERn0L8W4LMTxDwa250_JWc4rzgWoUg_I4-Stw-DR03lsc47h6-Nz8YroW7yh8xS3mLoWMzXB04TLhDm3MdBN9LjOtImJurgLHfWmM-fkpDHrjBe_d0ie7yaL8ZTNnu4fxrcz5mSlO1YaYUpjgCuJhRReg-NWC-WwKkopJFplQVuL1tmRg0Jy1cu4RnDKG-HkkPBDrksx54RNvU3txqT3Gni9H6P-O0ZvYQdLNkusV3GXQt_wf_03FX1gnA</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Bonat, Wagner H.</creator><creator>Jørgensen, Bent</creator><creator>Kokonendji, Célestin C.</creator><creator>Hinde, John</creator><creator>Demétrio, Clarice G. B.</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180201</creationdate><title>Extended Poisson–Tweedie: Properties and regression models for count data</title><author>Bonat, Wagner H. ; Jørgensen, Bent ; Kokonendji, Célestin C. ; Hinde, John ; Demétrio, Clarice G. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-6a2a6aa1073e432d91c0b927ce846323eb7b19bbebcb5c1430743209e1c7da2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonat, Wagner H.</creatorcontrib><creatorcontrib>Jørgensen, Bent</creatorcontrib><creatorcontrib>Kokonendji, Célestin C.</creatorcontrib><creatorcontrib>Hinde, John</creatorcontrib><creatorcontrib>Demétrio, Clarice G. B.</creatorcontrib><collection>CrossRef</collection><jtitle>Statistical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonat, Wagner H.</au><au>Jørgensen, Bent</au><au>Kokonendji, Célestin C.</au><au>Hinde, John</au><au>Demétrio, Clarice G. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Poisson–Tweedie: Properties and regression models for count data</atitle><jtitle>Statistical modelling</jtitle><date>2018-02-01</date><risdate>2018</risdate><volume>18</volume><issue>1</issue><spage>24</spage><epage>49</epage><pages>24-49</pages><issn>1471-082X</issn><eissn>1477-0342</eissn><abstract>We propose a new class of discrete generalized linear models based on the class of Poisson–Tweedie factorial dispersion models with variance of the form
μ
+
ϕ
μ
p
, where
μ
is the mean and
ϕ
and
p
are the dispersion and Tweedie power parameters, respectively. The models are fitted by using an estimating function approach obtained by combining the quasi-score and Pearson estimating functions for the estimation of the regression and dispersion parameters, respectively. This provides a flexible and efficient regression methodology for a comprehensive family of count models including Hermite, Neyman Type A, Pólya–Aeppli, negative binomial and Poisson-inverse Gaussian. The estimating function approach allows us to extend the Poisson–Tweedie distributions to deal with underdispersed count data by allowing negative values for the dispersion parameter
ϕ
. Furthermore, the Poisson–Tweedie family can automatically adapt to highly skewed count data with excessive zeros, without the need to introduce zero-inflated or hurdle components, by the simple estimation of the power parameter. Thus, the proposed models offer a unified framework to deal with under-, equi-, overdispersed, zero-inflated and heavy-tailed count data. The computational implementation of the proposed models is fast, relying only on a simple Newton scoring algorithm. Simulation studies showed that the estimating function approach provides unbiased and consistent estimators for both regression and dispersion parameters. We highlight the ability of the Poisson–Tweedie distributions to deal with count data through a consideration of dispersion, zero-inflated and heavy tail indices, and illustrate its application with four data analyses. We provide an R implementation and the datasets as supplementary materials.</abstract><cop>New Delhi, India</cop><pub>SAGE Publications</pub><doi>10.1177/1471082X17715718</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-082X |
ispartof | Statistical modelling, 2018-02, Vol.18 (1), p.24-49 |
issn | 1471-082X 1477-0342 |
language | eng |
recordid | cdi_crossref_primary_10_1177_1471082X17715718 |
source | SAGE |
title | Extended Poisson–Tweedie: Properties and regression models for count data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Poisson%E2%80%93Tweedie:%20Properties%20and%20regression%20models%20for%20count%20data&rft.jtitle=Statistical%20modelling&rft.au=Bonat,%20Wagner%20H.&rft.date=2018-02-01&rft.volume=18&rft.issue=1&rft.spage=24&rft.epage=49&rft.pages=24-49&rft.issn=1471-082X&rft.eissn=1477-0342&rft_id=info:doi/10.1177/1471082X17715718&rft_dat=%3Csage_cross%3E10.1177_1471082X17715718%3C/sage_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-6a2a6aa1073e432d91c0b927ce846323eb7b19bbebcb5c1430743209e1c7da2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1471082X17715718&rfr_iscdi=true |