Loading…

Data fusion approaches for structural health monitoring and system identification: Past, present, and future

During the past decades, significant efforts have been dedicated to develop reliable methods in structural health monitoring. The health assessment for the target structure of interest is achieved through the interpretation of collected data. At the beginning of the 21st century, the rapid advances...

Full description

Saved in:
Bibliographic Details
Published in:Structural Health Monitoring 2020-03, Vol.19 (2), p.552-586
Main Authors: Wu, Rih-Teng, Jahanshahi, Mohammad Reza
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-3155c222148ee5035c83a21b01cac1160276ef584d6fb8b09fc7ab7c59829c723
cites cdi_FETCH-LOGICAL-c395t-3155c222148ee5035c83a21b01cac1160276ef584d6fb8b09fc7ab7c59829c723
container_end_page 586
container_issue 2
container_start_page 552
container_title Structural Health Monitoring
container_volume 19
creator Wu, Rih-Teng
Jahanshahi, Mohammad Reza
description During the past decades, significant efforts have been dedicated to develop reliable methods in structural health monitoring. The health assessment for the target structure of interest is achieved through the interpretation of collected data. At the beginning of the 21st century, the rapid advances in sensor technologies and data acquisition platforms have led to the new era of Big Data, where a huge amount of heterogeneous data are collected by a variety of sensors. The increasing accessibility and diversity of the data resources provide new opportunities for structural health monitoring, while the aggregation of information obtained from multiple sensors to make robust decisions remains a challenging problem. This article presents a comprehensive review of the recent data fusion applications in structural health monitoring. State-of-the-art theoretical concepts and applications of data fusion in structural health monitoring are presented. Challenges for data fusion in structural health monitoring are discussed, and a roadmap is provided for future research in this area.
doi_str_mv 10.1177/1475921718798769
format article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1475921718798769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1475921718798769</sage_id><sourcerecordid>10.1177_1475921718798769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-3155c222148ee5035c83a21b01cac1160276ef584d6fb8b09fc7ab7c59829c723</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMKdoz-gAa8TxzY3VJ5SJTjAOdq4dusqTSLbOfTvcYETEqcd7Tw0GkKugd0ASHkLlRSagwQltZK1PiEzkBUUJdTqNONMF0f-nFzEuGMsQ1nPSPeACamboh96iuMYBjRbG6kbAo0pTCZNATu6tdilLd0PvU9D8P2GYr-m8RCT3VO_tn3yzhtMOeWOvmNMCzoGG_N_8a10U86xl-TMYRft1e-dk8-nx4_lS7F6e35d3q8KU2qRcmUhDOccKmWtYKUwqkQOLQODBqBmXNbWCVWta9eqlmlnJLbSCK24NpKXc8J-ck0YYgzWNWPwewyHBlhzXKv5u1a2FD-WiBvb7IYp9Lnh__ovrN1raQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data fusion approaches for structural health monitoring and system identification: Past, present, and future</title><source>SAGE</source><creator>Wu, Rih-Teng ; Jahanshahi, Mohammad Reza</creator><creatorcontrib>Wu, Rih-Teng ; Jahanshahi, Mohammad Reza</creatorcontrib><description>During the past decades, significant efforts have been dedicated to develop reliable methods in structural health monitoring. The health assessment for the target structure of interest is achieved through the interpretation of collected data. At the beginning of the 21st century, the rapid advances in sensor technologies and data acquisition platforms have led to the new era of Big Data, where a huge amount of heterogeneous data are collected by a variety of sensors. The increasing accessibility and diversity of the data resources provide new opportunities for structural health monitoring, while the aggregation of information obtained from multiple sensors to make robust decisions remains a challenging problem. This article presents a comprehensive review of the recent data fusion applications in structural health monitoring. State-of-the-art theoretical concepts and applications of data fusion in structural health monitoring are presented. Challenges for data fusion in structural health monitoring are discussed, and a roadmap is provided for future research in this area.</description><identifier>ISSN: 1475-9217</identifier><identifier>EISSN: 1741-3168</identifier><identifier>DOI: 10.1177/1475921718798769</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Structural Health Monitoring, 2020-03, Vol.19 (2), p.552-586</ispartof><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-3155c222148ee5035c83a21b01cac1160276ef584d6fb8b09fc7ab7c59829c723</citedby><cites>FETCH-LOGICAL-c395t-3155c222148ee5035c83a21b01cac1160276ef584d6fb8b09fc7ab7c59829c723</cites><orcidid>0000-0001-6583-3087 ; 0000-0002-9632-7109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>313,314,777,781,789,27903,27905,27906,79113</link.rule.ids></links><search><creatorcontrib>Wu, Rih-Teng</creatorcontrib><creatorcontrib>Jahanshahi, Mohammad Reza</creatorcontrib><title>Data fusion approaches for structural health monitoring and system identification: Past, present, and future</title><title>Structural Health Monitoring</title><description>During the past decades, significant efforts have been dedicated to develop reliable methods in structural health monitoring. The health assessment for the target structure of interest is achieved through the interpretation of collected data. At the beginning of the 21st century, the rapid advances in sensor technologies and data acquisition platforms have led to the new era of Big Data, where a huge amount of heterogeneous data are collected by a variety of sensors. The increasing accessibility and diversity of the data resources provide new opportunities for structural health monitoring, while the aggregation of information obtained from multiple sensors to make robust decisions remains a challenging problem. This article presents a comprehensive review of the recent data fusion applications in structural health monitoring. State-of-the-art theoretical concepts and applications of data fusion in structural health monitoring are presented. Challenges for data fusion in structural health monitoring are discussed, and a roadmap is provided for future research in this area.</description><issn>1475-9217</issn><issn>1741-3168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMKdoz-gAa8TxzY3VJ5SJTjAOdq4dusqTSLbOfTvcYETEqcd7Tw0GkKugd0ASHkLlRSagwQltZK1PiEzkBUUJdTqNONMF0f-nFzEuGMsQ1nPSPeACamboh96iuMYBjRbG6kbAo0pTCZNATu6tdilLd0PvU9D8P2GYr-m8RCT3VO_tn3yzhtMOeWOvmNMCzoGG_N_8a10U86xl-TMYRft1e-dk8-nx4_lS7F6e35d3q8KU2qRcmUhDOccKmWtYKUwqkQOLQODBqBmXNbWCVWta9eqlmlnJLbSCK24NpKXc8J-ck0YYgzWNWPwewyHBlhzXKv5u1a2FD-WiBvb7IYp9Lnh__ovrN1raQ</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Wu, Rih-Teng</creator><creator>Jahanshahi, Mohammad Reza</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6583-3087</orcidid><orcidid>https://orcid.org/0000-0002-9632-7109</orcidid></search><sort><creationdate>20200301</creationdate><title>Data fusion approaches for structural health monitoring and system identification: Past, present, and future</title><author>Wu, Rih-Teng ; Jahanshahi, Mohammad Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-3155c222148ee5035c83a21b01cac1160276ef584d6fb8b09fc7ab7c59829c723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Rih-Teng</creatorcontrib><creatorcontrib>Jahanshahi, Mohammad Reza</creatorcontrib><collection>CrossRef</collection><jtitle>Structural Health Monitoring</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Rih-Teng</au><au>Jahanshahi, Mohammad Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data fusion approaches for structural health monitoring and system identification: Past, present, and future</atitle><jtitle>Structural Health Monitoring</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>19</volume><issue>2</issue><spage>552</spage><epage>586</epage><pages>552-586</pages><issn>1475-9217</issn><eissn>1741-3168</eissn><abstract>During the past decades, significant efforts have been dedicated to develop reliable methods in structural health monitoring. The health assessment for the target structure of interest is achieved through the interpretation of collected data. At the beginning of the 21st century, the rapid advances in sensor technologies and data acquisition platforms have led to the new era of Big Data, where a huge amount of heterogeneous data are collected by a variety of sensors. The increasing accessibility and diversity of the data resources provide new opportunities for structural health monitoring, while the aggregation of information obtained from multiple sensors to make robust decisions remains a challenging problem. This article presents a comprehensive review of the recent data fusion applications in structural health monitoring. State-of-the-art theoretical concepts and applications of data fusion in structural health monitoring are presented. Challenges for data fusion in structural health monitoring are discussed, and a roadmap is provided for future research in this area.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1475921718798769</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0001-6583-3087</orcidid><orcidid>https://orcid.org/0000-0002-9632-7109</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1475-9217
ispartof Structural Health Monitoring, 2020-03, Vol.19 (2), p.552-586
issn 1475-9217
1741-3168
language eng
recordid cdi_crossref_primary_10_1177_1475921718798769
source SAGE
title Data fusion approaches for structural health monitoring and system identification: Past, present, and future
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20fusion%20approaches%20for%20structural%20health%20monitoring%20and%20system%20identification:%20Past,%20present,%20and%20future&rft.jtitle=Structural%20Health%20Monitoring&rft.au=Wu,%20Rih-Teng&rft.date=2020-03-01&rft.volume=19&rft.issue=2&rft.spage=552&rft.epage=586&rft.pages=552-586&rft.issn=1475-9217&rft.eissn=1741-3168&rft_id=info:doi/10.1177/1475921718798769&rft_dat=%3Csage_cross%3E10.1177_1475921718798769%3C/sage_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-3155c222148ee5035c83a21b01cac1160276ef584d6fb8b09fc7ab7c59829c723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1475921718798769&rfr_iscdi=true