Loading…

Rat Na V 1.7 loss-of-function genetic model: Deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers

Recapitulating human disease pathophysiology using genetic animal models is a powerful approach to enable mechanistic understanding of genotype–phenotype relationships for drug development. Na V 1.7 is a sodium channel expressed in the peripheral nervous system with strong human genetic validation a...

Full description

Saved in:
Bibliographic Details
Published in:Molecular pain 2019-01, Vol.15, p.1744806919881846
Main Authors: Grubinska, B, Chen, L, Alsaloum, M, Rampal, N, Matson, D J, Yang, C, Taborn, K, Zhang, M, Youngblood, B, Liu, D, Galbreath, E, Allred, S, Lepherd, M, Ferrando, R, Kornecook, T J, Lehto, S G, Waxman, S G, Moyer, B D, Dib-Hajj, S, Gingras, J
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1115-e834c20d7bd78b79764ba5478152c164399fbbfd43d002a1af45d6b11bcdcf003
cites cdi_FETCH-LOGICAL-c1115-e834c20d7bd78b79764ba5478152c164399fbbfd43d002a1af45d6b11bcdcf003
container_end_page
container_issue
container_start_page 1744806919881846
container_title Molecular pain
container_volume 15
creator Grubinska, B
Chen, L
Alsaloum, M
Rampal, N
Matson, D J
Yang, C
Taborn, K
Zhang, M
Youngblood, B
Liu, D
Galbreath, E
Allred, S
Lepherd, M
Ferrando, R
Kornecook, T J
Lehto, S G
Waxman, S G
Moyer, B D
Dib-Hajj, S
Gingras, J
description Recapitulating human disease pathophysiology using genetic animal models is a powerful approach to enable mechanistic understanding of genotype–phenotype relationships for drug development. Na V 1.7 is a sodium channel expressed in the peripheral nervous system with strong human genetic validation as a pain target. Efforts to identify novel analgesics that are nonaddictive resulted in industry exploration of a class of sulfonamide compounds that bind to the fourth voltage-sensor domain of Na V 1.7. Due to sequence differences in this region, sulfonamide blockers generally are potent on human but not rat Na V 1.7 channels. To test sulfonamide-based chemical matter in rat models of pain, we generated a humanized Na V 1.7 rat expressing a chimeric Na V 1.7 protein containing the sulfonamide-binding site of the human gene sequence as a replacement for the equivalent rat sequence. Unexpectedly, upon transcription, the human insert was spliced out, resulting in a premature stop codon. Using a validated antibody, Na V 1.7 protein was confirmed to be lost in the brainstem, dorsal root ganglia, sciatic nerve, and gastrointestinal tissue but not in nasal turbinates or olfactory bulb in rats homozygous for the knock-in allele (HOM-KI). HOM-KI rats exhibited normal intraepidermal nerve fiber density with reduced tetrodotoxin-sensitive current density and action potential firing in small diameter dorsal root ganglia neurons. HOM-KI rats did not exhibit nociceptive pain responses in hot plate or capsaicin-induced flinching assays and did not exhibit neuropathic pain responses following spinal nerve ligation. Consistent with expression of chimeric Na V 1.7 in olfactory tissue, HOM-KI rats retained olfactory function. This new genetic model highlights the necessity of Na V 1.7 for pain behavior in rats and indicates that sufficient inhibition of Na V 1.7 in humans may reduce pain in neuropathic conditions. Due to preserved olfactory function, this rat model represents an alternative to global Na V 1.7 knockout mice that require time-intensive hand feeding during early postnatal development.
doi_str_mv 10.1177/1744806919881846
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1744806919881846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31550995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1115-e834c20d7bd78b79764ba5478152c164399fbbfd43d002a1af45d6b11bcdcf003</originalsourceid><addsrcrecordid>eNpdkNtKAzEQhoMoVqv3XkleYGumm93seif1CEVB1NuSw8RGtsmSTSt9HZ_ULdUiXs3wM98_8BFyBmwEIMQFCM4rVtZQVxVUvNwjR5so22T7f_YBOe66D8ZywUo4JIMcioLVdXFEvp5loo-SvlEYCdqErsuCzezS6-SCp-_oMTlNF8Fgc0mv0Trt0Cfqg3Ya2-RWSKU31OMyhlameX_cSuepwrlcuRDpp0tzGjH1IRoaGit1CnFNdz82uPMpygxbZzAuZNPXxb7YOoWxOyEHVjYdnv7MIXm9vXmZ3GfTp7uHydU00wBQZFjlXI-ZEcqISolalFzJgosKirGGkud1bZWyhueGsbEEaXlhSgWgtNG2dzMkbNurY68hop210S1kXM-AzTa6Z_9198j5FmmXaoFmB_z6zb8B_I19bQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rat Na V 1.7 loss-of-function genetic model: Deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><source>SAGE Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Grubinska, B ; Chen, L ; Alsaloum, M ; Rampal, N ; Matson, D J ; Yang, C ; Taborn, K ; Zhang, M ; Youngblood, B ; Liu, D ; Galbreath, E ; Allred, S ; Lepherd, M ; Ferrando, R ; Kornecook, T J ; Lehto, S G ; Waxman, S G ; Moyer, B D ; Dib-Hajj, S ; Gingras, J</creator><creatorcontrib>Grubinska, B ; Chen, L ; Alsaloum, M ; Rampal, N ; Matson, D J ; Yang, C ; Taborn, K ; Zhang, M ; Youngblood, B ; Liu, D ; Galbreath, E ; Allred, S ; Lepherd, M ; Ferrando, R ; Kornecook, T J ; Lehto, S G ; Waxman, S G ; Moyer, B D ; Dib-Hajj, S ; Gingras, J</creatorcontrib><description>Recapitulating human disease pathophysiology using genetic animal models is a powerful approach to enable mechanistic understanding of genotype–phenotype relationships for drug development. Na V 1.7 is a sodium channel expressed in the peripheral nervous system with strong human genetic validation as a pain target. Efforts to identify novel analgesics that are nonaddictive resulted in industry exploration of a class of sulfonamide compounds that bind to the fourth voltage-sensor domain of Na V 1.7. Due to sequence differences in this region, sulfonamide blockers generally are potent on human but not rat Na V 1.7 channels. To test sulfonamide-based chemical matter in rat models of pain, we generated a humanized Na V 1.7 rat expressing a chimeric Na V 1.7 protein containing the sulfonamide-binding site of the human gene sequence as a replacement for the equivalent rat sequence. Unexpectedly, upon transcription, the human insert was spliced out, resulting in a premature stop codon. Using a validated antibody, Na V 1.7 protein was confirmed to be lost in the brainstem, dorsal root ganglia, sciatic nerve, and gastrointestinal tissue but not in nasal turbinates or olfactory bulb in rats homozygous for the knock-in allele (HOM-KI). HOM-KI rats exhibited normal intraepidermal nerve fiber density with reduced tetrodotoxin-sensitive current density and action potential firing in small diameter dorsal root ganglia neurons. HOM-KI rats did not exhibit nociceptive pain responses in hot plate or capsaicin-induced flinching assays and did not exhibit neuropathic pain responses following spinal nerve ligation. Consistent with expression of chimeric Na V 1.7 in olfactory tissue, HOM-KI rats retained olfactory function. This new genetic model highlights the necessity of Na V 1.7 for pain behavior in rats and indicates that sufficient inhibition of Na V 1.7 in humans may reduce pain in neuropathic conditions. Due to preserved olfactory function, this rat model represents an alternative to global Na V 1.7 knockout mice that require time-intensive hand feeding during early postnatal development.</description><identifier>ISSN: 1744-8069</identifier><identifier>EISSN: 1744-8069</identifier><identifier>DOI: 10.1177/1744806919881846</identifier><identifier>PMID: 31550995</identifier><language>eng</language><publisher>United States</publisher><ispartof>Molecular pain, 2019-01, Vol.15, p.1744806919881846</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1115-e834c20d7bd78b79764ba5478152c164399fbbfd43d002a1af45d6b11bcdcf003</citedby><cites>FETCH-LOGICAL-c1115-e834c20d7bd78b79764ba5478152c164399fbbfd43d002a1af45d6b11bcdcf003</cites><orcidid>0000-0003-4791-8866 ; 0000-0002-9832-0138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31550995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grubinska, B</creatorcontrib><creatorcontrib>Chen, L</creatorcontrib><creatorcontrib>Alsaloum, M</creatorcontrib><creatorcontrib>Rampal, N</creatorcontrib><creatorcontrib>Matson, D J</creatorcontrib><creatorcontrib>Yang, C</creatorcontrib><creatorcontrib>Taborn, K</creatorcontrib><creatorcontrib>Zhang, M</creatorcontrib><creatorcontrib>Youngblood, B</creatorcontrib><creatorcontrib>Liu, D</creatorcontrib><creatorcontrib>Galbreath, E</creatorcontrib><creatorcontrib>Allred, S</creatorcontrib><creatorcontrib>Lepherd, M</creatorcontrib><creatorcontrib>Ferrando, R</creatorcontrib><creatorcontrib>Kornecook, T J</creatorcontrib><creatorcontrib>Lehto, S G</creatorcontrib><creatorcontrib>Waxman, S G</creatorcontrib><creatorcontrib>Moyer, B D</creatorcontrib><creatorcontrib>Dib-Hajj, S</creatorcontrib><creatorcontrib>Gingras, J</creatorcontrib><title>Rat Na V 1.7 loss-of-function genetic model: Deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers</title><title>Molecular pain</title><addtitle>Mol Pain</addtitle><description>Recapitulating human disease pathophysiology using genetic animal models is a powerful approach to enable mechanistic understanding of genotype–phenotype relationships for drug development. Na V 1.7 is a sodium channel expressed in the peripheral nervous system with strong human genetic validation as a pain target. Efforts to identify novel analgesics that are nonaddictive resulted in industry exploration of a class of sulfonamide compounds that bind to the fourth voltage-sensor domain of Na V 1.7. Due to sequence differences in this region, sulfonamide blockers generally are potent on human but not rat Na V 1.7 channels. To test sulfonamide-based chemical matter in rat models of pain, we generated a humanized Na V 1.7 rat expressing a chimeric Na V 1.7 protein containing the sulfonamide-binding site of the human gene sequence as a replacement for the equivalent rat sequence. Unexpectedly, upon transcription, the human insert was spliced out, resulting in a premature stop codon. Using a validated antibody, Na V 1.7 protein was confirmed to be lost in the brainstem, dorsal root ganglia, sciatic nerve, and gastrointestinal tissue but not in nasal turbinates or olfactory bulb in rats homozygous for the knock-in allele (HOM-KI). HOM-KI rats exhibited normal intraepidermal nerve fiber density with reduced tetrodotoxin-sensitive current density and action potential firing in small diameter dorsal root ganglia neurons. HOM-KI rats did not exhibit nociceptive pain responses in hot plate or capsaicin-induced flinching assays and did not exhibit neuropathic pain responses following spinal nerve ligation. Consistent with expression of chimeric Na V 1.7 in olfactory tissue, HOM-KI rats retained olfactory function. This new genetic model highlights the necessity of Na V 1.7 for pain behavior in rats and indicates that sufficient inhibition of Na V 1.7 in humans may reduce pain in neuropathic conditions. Due to preserved olfactory function, this rat model represents an alternative to global Na V 1.7 knockout mice that require time-intensive hand feeding during early postnatal development.</description><issn>1744-8069</issn><issn>1744-8069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkNtKAzEQhoMoVqv3XkleYGumm93seif1CEVB1NuSw8RGtsmSTSt9HZ_ULdUiXs3wM98_8BFyBmwEIMQFCM4rVtZQVxVUvNwjR5so22T7f_YBOe66D8ZywUo4JIMcioLVdXFEvp5loo-SvlEYCdqErsuCzezS6-SCp-_oMTlNF8Fgc0mv0Trt0Cfqg3Ya2-RWSKU31OMyhlameX_cSuepwrlcuRDpp0tzGjH1IRoaGit1CnFNdz82uPMpygxbZzAuZNPXxb7YOoWxOyEHVjYdnv7MIXm9vXmZ3GfTp7uHydU00wBQZFjlXI-ZEcqISolalFzJgosKirGGkud1bZWyhueGsbEEaXlhSgWgtNG2dzMkbNurY68hop210S1kXM-AzTa6Z_9198j5FmmXaoFmB_z6zb8B_I19bQ</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Grubinska, B</creator><creator>Chen, L</creator><creator>Alsaloum, M</creator><creator>Rampal, N</creator><creator>Matson, D J</creator><creator>Yang, C</creator><creator>Taborn, K</creator><creator>Zhang, M</creator><creator>Youngblood, B</creator><creator>Liu, D</creator><creator>Galbreath, E</creator><creator>Allred, S</creator><creator>Lepherd, M</creator><creator>Ferrando, R</creator><creator>Kornecook, T J</creator><creator>Lehto, S G</creator><creator>Waxman, S G</creator><creator>Moyer, B D</creator><creator>Dib-Hajj, S</creator><creator>Gingras, J</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4791-8866</orcidid><orcidid>https://orcid.org/0000-0002-9832-0138</orcidid></search><sort><creationdate>201901</creationdate><title>Rat Na V 1.7 loss-of-function genetic model: Deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers</title><author>Grubinska, B ; Chen, L ; Alsaloum, M ; Rampal, N ; Matson, D J ; Yang, C ; Taborn, K ; Zhang, M ; Youngblood, B ; Liu, D ; Galbreath, E ; Allred, S ; Lepherd, M ; Ferrando, R ; Kornecook, T J ; Lehto, S G ; Waxman, S G ; Moyer, B D ; Dib-Hajj, S ; Gingras, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1115-e834c20d7bd78b79764ba5478152c164399fbbfd43d002a1af45d6b11bcdcf003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grubinska, B</creatorcontrib><creatorcontrib>Chen, L</creatorcontrib><creatorcontrib>Alsaloum, M</creatorcontrib><creatorcontrib>Rampal, N</creatorcontrib><creatorcontrib>Matson, D J</creatorcontrib><creatorcontrib>Yang, C</creatorcontrib><creatorcontrib>Taborn, K</creatorcontrib><creatorcontrib>Zhang, M</creatorcontrib><creatorcontrib>Youngblood, B</creatorcontrib><creatorcontrib>Liu, D</creatorcontrib><creatorcontrib>Galbreath, E</creatorcontrib><creatorcontrib>Allred, S</creatorcontrib><creatorcontrib>Lepherd, M</creatorcontrib><creatorcontrib>Ferrando, R</creatorcontrib><creatorcontrib>Kornecook, T J</creatorcontrib><creatorcontrib>Lehto, S G</creatorcontrib><creatorcontrib>Waxman, S G</creatorcontrib><creatorcontrib>Moyer, B D</creatorcontrib><creatorcontrib>Dib-Hajj, S</creatorcontrib><creatorcontrib>Gingras, J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Molecular pain</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grubinska, B</au><au>Chen, L</au><au>Alsaloum, M</au><au>Rampal, N</au><au>Matson, D J</au><au>Yang, C</au><au>Taborn, K</au><au>Zhang, M</au><au>Youngblood, B</au><au>Liu, D</au><au>Galbreath, E</au><au>Allred, S</au><au>Lepherd, M</au><au>Ferrando, R</au><au>Kornecook, T J</au><au>Lehto, S G</au><au>Waxman, S G</au><au>Moyer, B D</au><au>Dib-Hajj, S</au><au>Gingras, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rat Na V 1.7 loss-of-function genetic model: Deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers</atitle><jtitle>Molecular pain</jtitle><addtitle>Mol Pain</addtitle><date>2019-01</date><risdate>2019</risdate><volume>15</volume><spage>1744806919881846</spage><pages>1744806919881846-</pages><issn>1744-8069</issn><eissn>1744-8069</eissn><abstract>Recapitulating human disease pathophysiology using genetic animal models is a powerful approach to enable mechanistic understanding of genotype–phenotype relationships for drug development. Na V 1.7 is a sodium channel expressed in the peripheral nervous system with strong human genetic validation as a pain target. Efforts to identify novel analgesics that are nonaddictive resulted in industry exploration of a class of sulfonamide compounds that bind to the fourth voltage-sensor domain of Na V 1.7. Due to sequence differences in this region, sulfonamide blockers generally are potent on human but not rat Na V 1.7 channels. To test sulfonamide-based chemical matter in rat models of pain, we generated a humanized Na V 1.7 rat expressing a chimeric Na V 1.7 protein containing the sulfonamide-binding site of the human gene sequence as a replacement for the equivalent rat sequence. Unexpectedly, upon transcription, the human insert was spliced out, resulting in a premature stop codon. Using a validated antibody, Na V 1.7 protein was confirmed to be lost in the brainstem, dorsal root ganglia, sciatic nerve, and gastrointestinal tissue but not in nasal turbinates or olfactory bulb in rats homozygous for the knock-in allele (HOM-KI). HOM-KI rats exhibited normal intraepidermal nerve fiber density with reduced tetrodotoxin-sensitive current density and action potential firing in small diameter dorsal root ganglia neurons. HOM-KI rats did not exhibit nociceptive pain responses in hot plate or capsaicin-induced flinching assays and did not exhibit neuropathic pain responses following spinal nerve ligation. Consistent with expression of chimeric Na V 1.7 in olfactory tissue, HOM-KI rats retained olfactory function. This new genetic model highlights the necessity of Na V 1.7 for pain behavior in rats and indicates that sufficient inhibition of Na V 1.7 in humans may reduce pain in neuropathic conditions. Due to preserved olfactory function, this rat model represents an alternative to global Na V 1.7 knockout mice that require time-intensive hand feeding during early postnatal development.</abstract><cop>United States</cop><pmid>31550995</pmid><doi>10.1177/1744806919881846</doi><orcidid>https://orcid.org/0000-0003-4791-8866</orcidid><orcidid>https://orcid.org/0000-0002-9832-0138</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1744-8069
ispartof Molecular pain, 2019-01, Vol.15, p.1744806919881846
issn 1744-8069
1744-8069
language eng
recordid cdi_crossref_primary_10_1177_1744806919881846
source Publicly Available Content Database; PubMed Central(OpenAccess); SAGE Open Access Journals; Free Full-Text Journals in Chemistry
title Rat Na V 1.7 loss-of-function genetic model: Deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A53%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rat%20Na%20V%201.7%20loss-of-function%20genetic%20model:%20Deficient%20nociceptive%20and%20neuropathic%20pain%20behavior%20with%20retained%20olfactory%20function%20and%20intra-epidermal%20nerve%20fibers&rft.jtitle=Molecular%20pain&rft.au=Grubinska,%20B&rft.date=2019-01&rft.volume=15&rft.spage=1744806919881846&rft.pages=1744806919881846-&rft.issn=1744-8069&rft.eissn=1744-8069&rft_id=info:doi/10.1177/1744806919881846&rft_dat=%3Cpubmed_cross%3E31550995%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1115-e834c20d7bd78b79764ba5478152c164399fbbfd43d002a1af45d6b11bcdcf003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/31550995&rfr_iscdi=true