Loading…

Development of a Multiplexed Microfluidic Platform for the Automated Cultivation of Embryonic Stem Cells

We present a multiplexed platform for a microfabricated stem cell culture device. The modular platform contains all the components to control stem cell culture conditions in an automated fashion. It does not require an incubator during perfusion culture and can be mounted on the stage of an inverted...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Laboratory Automation 2013-12, Vol.18 (6), p.519-529
Main Authors: Reichen, Marcel, Veraitch, Farlan Singh, Szita, Nicolas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a multiplexed platform for a microfabricated stem cell culture device. The modular platform contains all the components to control stem cell culture conditions in an automated fashion. It does not require an incubator during perfusion culture and can be mounted on the stage of an inverted fluorescence microscope for high-frequency imaging of stem cell cultures. A pressure-driven pump provides control over the medium flow rate and offers switching of the flow rates. Flow rates of the pump are characterized for different pressure settings, and a linear correlation between the applied pressure and the flow rate in the cell culture devices is shown. In addition, the pump operates with two culture medium reservoirs, thus enabling the switching of the culture medium on-the-fly during a cell culture experiment. Also, with our platform, the culture medium reservoirs are cooled to prevent medium degradation during long-term experiments. Media temperature is then adjusted to a higher controlled temperature before entering the microfabricated cell culture device. Furthermore, the temperature is regulated in the microfabricated culture devices themselves. Preliminary culture experiments are demonstrated using mouse embryonic stem cells.
ISSN:2211-0682
2472-6303
1535-5535
1540-2452
DOI:10.1177/2211068213499917