Loading…

Improving Laboratory Efficiency by Automation of Preanalytic Processing of ThinPrep Specimens for Real-Time PCR High-Risk HPV Testing

Cervical specimens collected in liquid-based cytology (LBC) media are the most common sample type used for high-risk human papillomavirus (HPV) testing. Since preanalytic steps such as vortexing and decapping vials, liquid transfer to a sample input tube with matching unique identifier, and recappin...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Laboratory Automation 2016-06, Vol.21 (3), p.432-438
Main Authors: Barbieri, Daniela, Venturoli, Simona, Costa, Silvano, Landini, Maria Paola
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cervical specimens collected in liquid-based cytology (LBC) media are the most common sample type used for high-risk human papillomavirus (HPV) testing. Since preanalytic steps such as vortexing and decapping vials, liquid transfer to a sample input tube with matching unique identifier, and recapping the original vials are required for processing LBC samples prior to running the Abbott RealTime High Risk HPV assay (Abbott, Wiesbaden, Germany), a full manual execution can be complicated, especially in high-throughput diagnostic contexts. Here, a custom-configured worktable setup for the Tecan Freedom EVO (Tecan, Männedorf, Switzerland) designed to automate and control preanalytic steps for ThinPrep (Hologic, Marlborough, MA) samples was used to evaluate the impact of automated versus manual preanalytics. Archival results for manual processing of 226 samples were compared with those obtained with the Tecan protocol, observing a very good overall concordance for final assay interpretation (95.6%). High overall agreement (100%) resulted also from retesting 99 samples by both the preanalytical protocols. High reproducibility was observed analyzing 23 randomly selected samples by automated preprocessing in triplicate. Hence, the new configuration of the Tecan platform translates the manual steps required to process ThinPrep specimens into automated operations, controls sample identification, and allows for saving hands-on time, while maintaining assay reproducibility and ensuring reliability of results, making it suitable for screening settings.
ISSN:2211-0682
2472-6303
1540-2452
DOI:10.1177/2211068215569347