Loading…

N-Acetylcysteine As a Therapeutic for JAK2V617F Myeloproliferative Neoplasms

Chronic inflammation is common in MPN and drives disease progression and worsens symptom burden. It has been reported that JAK2V617F hematopoietic stem and progenitor cells (HSPCs) exhibit elevated basal oxidative stress compared to wild-type cells. However, JAK2V617F HSCs have a differential respon...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2018-11, Vol.132 (Supplement 1), p.1786-1786
Main Authors: Craver, Brianna, Ramanathan, Gajalakshmi, Mendez Luque, Laura, Hoang, Summer, Elalaoui, Kenza, Brooks, Stefan, Lai, Hew Yeng, Fleischman, Angela
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chronic inflammation is common in MPN and drives disease progression and worsens symptom burden. It has been reported that JAK2V617F hematopoietic stem and progenitor cells (HSPCs) exhibit elevated basal oxidative stress compared to wild-type cells. However, JAK2V617F HSCs have a differential response than normal HSPCs upon stimulation with pro-inflammatory cytokines or lipopolysaccharide (LPS) invivo and in vitro. Specifically, JAK2V617F HSPCs do not significantly increase reactive oxygen species, exit quiescence, or increase DNA damage following LPS exposure (Blood 2017 130:4211). Therefore, we hypothesized that oxidative stress is important for differential responses of wild-type and JAK2V617F HSCs to inflammation. To compare cell responses to oxidative stress, we treated bone marrow cells from JAK2V617F knock-in and wild-type mice ex vivo with L-buthionine-S,R-sulfoximine (BSO), which reduces glutathione levels, then measured the impact on myeloid colony formation in methylcellulose. JAK2V617F knock-in bone marrow cells are resistant to oxidative stress-induced reduction in colony formation compared to wild-type bone marrow cells. This data suggests that JAK2V617F myeloid progenitors produce less reactive oxygen species in response to BSO or that these cells are resistant to oxidative stress-induced cell death. Next, we tested the effect of the anti-oxidant n-acetylcysteine (NAC) in a JAK2V617F knock-in mouse model. All hematopoietic cells in this model express JAK2V617F, these mice develop elevated blood counts, splenomegaly, and die suddenly at approximately 2-3 months of age. Surprisingly, addition of NAC (2g/L) in the drinking water extended the lifespan of JAK2V617F-knock in mice (p
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2018-99-117395