Loading…

The Hypofibrinolytic Defect of Nephrotic Syndrome Is Directly Proportional to Fibrin Network Density

Introduction Nephrotic syndrome (NS) is characterized by massive proteinuria (secondary to podocyte injury), hypoalbuminemia, and edema. Importantly, NS is associated with a complex acquired hypercoagulopathy and a high incidence (~25%) of life-threatening thrombotic complications. Both hypercoagulo...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2018-11, Vol.132 (Supplement 1), p.1218-1218
Main Authors: Waller, Amanda P., Wolfgang, Katelyn J, Kerlin, Bryce A.
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Introduction Nephrotic syndrome (NS) is characterized by massive proteinuria (secondary to podocyte injury), hypoalbuminemia, and edema. Importantly, NS is associated with a complex acquired hypercoagulopathy and a high incidence (~25%) of life-threatening thrombotic complications. Both hypercoagulopathy and hypofibrinolysis are described contributors to NS-related VTE risk. However, the mechanisms underlying the latter are poorly understood. We previously showed NS disease severity is directly proportional to both hypercoagulopathy and fibrinolytic resistance There is evidence that fibrin clot structural density contributes to clot stability and has been observed in the presence of both increased plasma thrombin generation and fibrinogen levels, both of which we have previously demonstrated in NS. Thus the aim of the present study was to investigate the mechanistic relationship between fibrin clot structure and fibrinolysis using two rodent models of NS and a cohort of human NS patients. We hypothesized that hypofibrinolysis arises from increased fibrin network density in a manner directly proportional to NS disease severity. Methods Using two well-established rat models of NS, transgenic diphtheria toxin receptor (DTR) and puromycin aminonucleoside (PAN), we compared fibrinolytic markers to disease severity. A range of severity was induced by a single injection of diphtheria toxin (0-75 ng/kg IP) or PAN (0-150 mg/kg IV). On day 10 post-injection, morning spot urines were collected and analyzed for protein:creatinine ratio (uPr:Cr). Rats were then anesthetized and venous blood (IVC) was collected into 0.32% NaCitrate/1.45 µM Corn Trypsin Inhibitor and spun down to platelet poor plasma (PPP). Samples were also collected from a local cohort of pediatric and adult NS patients (n=23), along with the corresponding clinical lab data for each patient. Plasma clot lysis assay (CLA) was performed using urokinase (50 IU) +/- plasminogen (2.4 uM), on clots initiated with high (20 nM) or low (5 nM) thrombin. Clot fibrin network structure was visualized/assessed by laser scanning confocal microscopy using fluorescently-labeled fibrinogen as a tracer. Fibrinolytic markers in plasma were measured by ELISA. Results Hypofibrinolysis: Previous findings of a hypofibrinolytic defect was confirmed with the CLA, such that plasma clot lysis at 60 min was significantly negatively correlated with proteinuria (R2=0.196; P=0.007 & R2=0.214; P=0.010) and significantly positively cor
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2018-99-119947