Loading…
Chromatin Architecture Modulation in B-Cell Acute Lymphoblastic Leukemia Carrying DUX4 Fusions
B-cell acute lymphoblastic leukemia (B-ALL) carrying DUX4 fusions is a novel cluster of B-ALL. DUX4 fusions are generated from insertions of wild- type (WT) DUX4, mainly into the IGH locus.The translocation replaces the 3′ end of the WT DUX4 coding region with a fragment of IGH or another gene, prod...
Saved in:
Published in: | Blood 2019-11, Vol.134 (Supplement_1), p.1240-1240 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | B-cell acute lymphoblastic leukemia (B-ALL) carrying DUX4 fusions is a novel cluster of B-ALL. DUX4 fusions are generated from insertions of wild- type (WT) DUX4, mainly into the IGH locus.The translocation replaces the 3′ end of the WT DUX4 coding region with a fragment of IGH or another gene, producing DUX4 out-of-frame fusion proteins devoid of the C terminus of WT DUX4. Usually, WT DUX4 is expressed in germ cells in testis, while its expression is epigenetically repressed in somatic tissues. Recently, it is identified to plays a critical role in transcriptional programs at the cleavage of human fertilized egg. In B-ALL, DUX4-IGH (D-I) is shown to be essential for leukemic transformation; however, little is known about the mechanistic basis. Here in this study, we extensively investigated the biological effects of D-I.
First, we assessed the role of D-I using in vitro cell culture assays with human cord blood (CB) CD34+ cells. Introduction of D-I significantly caused retention of the CD34+ cell population compared with the mock vector, even though it failed to preferentially promote differentiation toward B cell lineage in vitro.
To analyze the epigenetic and transcription control by D-I, we performed chromatin immunoprecipitation coupled with sequencing (ChIP-seq) using cell lines. In NALM6, a B-ALL cell line carrying D-I, a subset of D-I binding sites is accompanied by H3K4me3 and H3K27ac. We also assessed the histone modification status in Reh cells, a B-ALL cell line without DUX4 fusions, and observed that active histone marks are detected after binding of ectopically expressed D-I. Nevertheless, RNA sequencing of NALM6 and Reh overexpressing D-I showed minimal activation of genes near the D-I binding sites compared with those of NALM6 overexpressing WT DUX4.
WT DUX4 is known to preferentially bind and activate repeat elements, especially human endogenous retroviral (HERV) elements in embryonic cells. NALM6 cells overexpressing WT DUX4 showed a drastic increase in the expression of HERV elements, while NALM6 and Reh overexpressing D-I did not. The expression of HERV elements was not altered by D-I in all the genomic regions, and we did not observe increased expression of HERV elements in patient leukemia samples with DUX4 fusions as well. Furthermore, Assay for Transposase Accessible Chromatin Sequencing (ATAC-seq) showed that chromatin status was not affected by the binding of D-I at the D-I bound HERV element, indicating that transcriptional and i |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2019-125207 |