Loading…

DNA and RNA Profiles in Machine Learning Algorithm to Predict Which Patients with AML/MDS Will Respond to Venetoclax-Based Therapy

Saved in:
Bibliographic Details
Published in:Blood 2022-11, Vol.140 (Supplement 1), p.6270-6271
Main Authors: Albitar, Maher, Ip, Andrew, Goy, Andre H., Linder, Katherine, Estella, Jeffrey Justin, Charifa, Ahmad, Ma, Wanlong, Pecora, Andrew L., Koprivnikar, Jamie, McCloskey, James
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6271
container_issue Supplement 1
container_start_page 6270
container_title Blood
container_volume 140
creator Albitar, Maher
Ip, Andrew
Goy, Andre H.
Linder, Katherine
Estella, Jeffrey Justin
Charifa, Ahmad
Ma, Wanlong
Pecora, Andrew L.
Koprivnikar, Jamie
McCloskey, James
description
doi_str_mv 10.1182/blood-2022-167406
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1182_blood_2022_167406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006497122043439</els_id><sourcerecordid>S0006497122043439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1376-d8ae2c50e64b3b71362033151d8c0cad9e66255258c592f3837220f385ff78643</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAez8A6Z-xE4qVqXlJaVQlUKXketMGqM0ruwI6JYvx6WsWd3FzLmaOQhdMnrFWMYHq8a5knDKOWEqTag6Qj0meUYo5fQY9SiliiTDlJ2isxDeKWWJ4LKHvidPI6zbEs9jzryrbAMB2xZPtaltCzgH7VvbrvGoWTtvu3qDOxc3obSmw8vamhrPdGeh7QL-jHM8muaD6eQFL23T4DmErYv1kXmDFjpnGv1FbnSAEi9q8Hq7O0cnlW4CXPxlH73e3S7GDyR_vn8cj3JimEgVKTMN3EgKKlmJVcqE4lQIJlmZGWp0OQSluJRcZkYOeSUykXJOY8qqSjOViD5ih17jXQgeqmLr7Ub7XcFosZdY_Eos9hKLg8TIXB8YiId9WPBFMPFVE7_3YLqidPYf-gcHKXjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DNA and RNA Profiles in Machine Learning Algorithm to Predict Which Patients with AML/MDS Will Respond to Venetoclax-Based Therapy</title><source>ScienceDirect</source><creator>Albitar, Maher ; Ip, Andrew ; Goy, Andre H. ; Linder, Katherine ; Estella, Jeffrey Justin ; Charifa, Ahmad ; Ma, Wanlong ; Pecora, Andrew L. ; Koprivnikar, Jamie ; McCloskey, James</creator><creatorcontrib>Albitar, Maher ; Ip, Andrew ; Goy, Andre H. ; Linder, Katherine ; Estella, Jeffrey Justin ; Charifa, Ahmad ; Ma, Wanlong ; Pecora, Andrew L. ; Koprivnikar, Jamie ; McCloskey, James</creatorcontrib><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood-2022-167406</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Blood, 2022-11, Vol.140 (Supplement 1), p.6270-6271</ispartof><rights>2022 The American Society of Hematology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006497122043439$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27901,27902,45756</link.rule.ids></links><search><creatorcontrib>Albitar, Maher</creatorcontrib><creatorcontrib>Ip, Andrew</creatorcontrib><creatorcontrib>Goy, Andre H.</creatorcontrib><creatorcontrib>Linder, Katherine</creatorcontrib><creatorcontrib>Estella, Jeffrey Justin</creatorcontrib><creatorcontrib>Charifa, Ahmad</creatorcontrib><creatorcontrib>Ma, Wanlong</creatorcontrib><creatorcontrib>Pecora, Andrew L.</creatorcontrib><creatorcontrib>Koprivnikar, Jamie</creatorcontrib><creatorcontrib>McCloskey, James</creatorcontrib><title>DNA and RNA Profiles in Machine Learning Algorithm to Predict Which Patients with AML/MDS Will Respond to Venetoclax-Based Therapy</title><title>Blood</title><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAez8A6Z-xE4qVqXlJaVQlUKXketMGqM0ruwI6JYvx6WsWd3FzLmaOQhdMnrFWMYHq8a5knDKOWEqTag6Qj0meUYo5fQY9SiliiTDlJ2isxDeKWWJ4LKHvidPI6zbEs9jzryrbAMB2xZPtaltCzgH7VvbrvGoWTtvu3qDOxc3obSmw8vamhrPdGeh7QL-jHM8muaD6eQFL23T4DmErYv1kXmDFjpnGv1FbnSAEi9q8Hq7O0cnlW4CXPxlH73e3S7GDyR_vn8cj3JimEgVKTMN3EgKKlmJVcqE4lQIJlmZGWp0OQSluJRcZkYOeSUykXJOY8qqSjOViD5ih17jXQgeqmLr7Ub7XcFosZdY_Eos9hKLg8TIXB8YiId9WPBFMPFVE7_3YLqidPYf-gcHKXjA</recordid><startdate>20221115</startdate><enddate>20221115</enddate><creator>Albitar, Maher</creator><creator>Ip, Andrew</creator><creator>Goy, Andre H.</creator><creator>Linder, Katherine</creator><creator>Estella, Jeffrey Justin</creator><creator>Charifa, Ahmad</creator><creator>Ma, Wanlong</creator><creator>Pecora, Andrew L.</creator><creator>Koprivnikar, Jamie</creator><creator>McCloskey, James</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221115</creationdate><title>DNA and RNA Profiles in Machine Learning Algorithm to Predict Which Patients with AML/MDS Will Respond to Venetoclax-Based Therapy</title><author>Albitar, Maher ; Ip, Andrew ; Goy, Andre H. ; Linder, Katherine ; Estella, Jeffrey Justin ; Charifa, Ahmad ; Ma, Wanlong ; Pecora, Andrew L. ; Koprivnikar, Jamie ; McCloskey, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1376-d8ae2c50e64b3b71362033151d8c0cad9e66255258c592f3837220f385ff78643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albitar, Maher</creatorcontrib><creatorcontrib>Ip, Andrew</creatorcontrib><creatorcontrib>Goy, Andre H.</creatorcontrib><creatorcontrib>Linder, Katherine</creatorcontrib><creatorcontrib>Estella, Jeffrey Justin</creatorcontrib><creatorcontrib>Charifa, Ahmad</creatorcontrib><creatorcontrib>Ma, Wanlong</creatorcontrib><creatorcontrib>Pecora, Andrew L.</creatorcontrib><creatorcontrib>Koprivnikar, Jamie</creatorcontrib><creatorcontrib>McCloskey, James</creatorcontrib><collection>CrossRef</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albitar, Maher</au><au>Ip, Andrew</au><au>Goy, Andre H.</au><au>Linder, Katherine</au><au>Estella, Jeffrey Justin</au><au>Charifa, Ahmad</au><au>Ma, Wanlong</au><au>Pecora, Andrew L.</au><au>Koprivnikar, Jamie</au><au>McCloskey, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA and RNA Profiles in Machine Learning Algorithm to Predict Which Patients with AML/MDS Will Respond to Venetoclax-Based Therapy</atitle><jtitle>Blood</jtitle><date>2022-11-15</date><risdate>2022</risdate><volume>140</volume><issue>Supplement 1</issue><spage>6270</spage><epage>6271</epage><pages>6270-6271</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><pub>Elsevier Inc</pub><doi>10.1182/blood-2022-167406</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-4971
ispartof Blood, 2022-11, Vol.140 (Supplement 1), p.6270-6271
issn 0006-4971
1528-0020
language eng
recordid cdi_crossref_primary_10_1182_blood_2022_167406
source ScienceDirect
title DNA and RNA Profiles in Machine Learning Algorithm to Predict Which Patients with AML/MDS Will Respond to Venetoclax-Based Therapy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20and%20RNA%20Profiles%20in%20Machine%20Learning%20Algorithm%20to%20Predict%20Which%20Patients%20with%20AML/MDS%20Will%20Respond%20to%20Venetoclax-Based%20Therapy&rft.jtitle=Blood&rft.au=Albitar,%20Maher&rft.date=2022-11-15&rft.volume=140&rft.issue=Supplement%201&rft.spage=6270&rft.epage=6271&rft.pages=6270-6271&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood-2022-167406&rft_dat=%3Celsevier_cross%3ES0006497122043439%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1376-d8ae2c50e64b3b71362033151d8c0cad9e66255258c592f3837220f385ff78643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true