Loading…

Targeted Protein Degradation for c-MYC Overcomes Therapy Resistance in T-Cell Acute Lymphoblastic Leukemias

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy characterized by diffuse infiltration of the bone marrow by immature lymphoblasts of thymic origin expressing T-cell surface markers. Early T cell precursor (ETP)-ALL is a distinct subtype of T-ALL characterized by...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2023-11, Vol.142 (Supplement 1), p.1447-1447
Main Authors: Munir, Faryal, Khazaei, Shayaun, Calkins, Phoebe H., Scruggs, Darah, Mizuno, Hideaki, Ostermann, Lauren B., Cuglievan, Branko, Garcia, Miriam B., Chen, Dong, Tong, Youzhi, Ren, Zhihua, Andreeff, Michael, Nishida, Yuki
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy characterized by diffuse infiltration of the bone marrow by immature lymphoblasts of thymic origin expressing T-cell surface markers. Early T cell precursor (ETP)-ALL is a distinct subtype of T-ALL characterized by a lack of CD1a and CD8; low expression of CD5 and the presence of myeloid or stem cell markers, and recent studies have shown resistance to conventional chemotherapies and poor outcome in ETP-ALL compared to thymic or mature T-ALL. A recent study revealed distinct gene expression profiles in adult compared to pediatric-adolescent ETP-ALL, representing higher expression levels of BCL2 and CD34 (Dai et al. Proc Natl Acad Sci 2022), however, detailed proteomic profiling in ETA-ALL has yet to be determined. Amplification of overexpression of MYC oncogene or stabilization of c-MYC protein occurs up to 70% in human cancers. Multifaceted activities of MYC include rapid proliferation of malignant cells supported by increased mitochondrial and ribosome biogenesis, dysregulated protein translation, and altered metabolism. NOTCH1-MYC signaling axis activation is one of the hallmarks that drives T-ALL leukemogenesis (Weng et al, Science 2004; Sanchez-Martin and Ferrando, Blood 2017). We have reported that targeting of BRD4 proteins induces suppression of leukemia initiating cells (LICs) in T-ALL by inhibiting the NOTCH1-MYC-CD44 axis, providing rationale to target MYC in therapy-resistant T-ALL (Piya et al. Leukemia 2022). We recently reported targeted protein degradation of c-MYC utilizing GT19715, the first-in-class cereblon modulator (CELMoD) for c-MYC exhibited promising anti-leukemia efficacy in acute myeloid leukemias (Nishida et al. ASH 2022). Here we employ GT19715 to investigate efficacy of targeting protein degradation of c-MYC in T-ALL. GT19715 induced dose-dependent apoptosis and cytoreduction in T-ALL cell lines with IC50 values below 10 nM except HPB-ALL cells. We found substantial decrease of c-MYC protein levels in sensitive but not in resistant cells (HPB-ALL). GT19715 induced apoptosis and ³ 90% cytoreduction at nanomolar concentrations in primary, therapy-resistant T-ALL. GT19715 also enhanced cell death induced by dexamethasone. In a xenograft model of CCRF-CEM cells carrying NOTCH1, PTEN, FBXW7, KRAS and TP53 mutations, GT19715 (3 mg/kg, three IP injections per week, two weeks on and one week off) reduced > 99% circulating human CD45+ leukemia cells co
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2023-187496