Loading…
Mesenchymal stem cells can be specifically transplanted into the femur: a Magic result by Magnetism-induced cell target transplantation (MagiC-TT) in dual transgenic mice model
Mesenchymal stem cells (MSCs), like non-hematopoietic multipotent stem cells, are considered as the most promising stem cells for clinical use, such as treatment of aplastic anemia, graft-versus-host-disease after allogeneic hematopoietic stem cell (HSC) transplantation, as well as tissue engineerin...
Saved in:
Published in: | Blood 2014-12, Vol.124 (21), p.2416-2416 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mesenchymal stem cells (MSCs), like non-hematopoietic multipotent stem cells, are considered as the most promising stem cells for clinical use, such as treatment of aplastic anemia, graft-versus-host-disease after allogeneic hematopoietic stem cell (HSC) transplantation, as well as tissue engineering, etc. But the fate of MSC in vivo remains almost unknown, including its homing, proliferation and the interaction between MSC and surrounding cells. Target transplantation has been a dream of researchers for many years, especially for such important cells as MSC or HSC, and now it can be made possible by our self-established novel Magnetism-induced cell target transplantation (MagiC-TT).
To explore the distribution and survival of donor MSCs transplanted by Magnetism-induced cell target transplantation (MagiC-TT) in vivo, with dual fluorescent protein transgenic mice model.
1) Magnetized cells: the C57BL/6 RFP-MSCs were bought from Cyagen Biosciences Inc. (China) and were magnetized by self-made Au@Fe nano-particle, positive cells were sorted by MACS column. 2) Cell biology: Both magnetized and wild type (wt) cells were stained by Wright Giemsa and HE staining, as well as Prussian blue, there were no differences in cell morphology, while the particles of Au@Fe exist within or on the surface of magnetized cells. CCK8 method did not find any statistical significances in cell proliferation (P=0.802), cell cycle and cell viability. 3) In vitro study: In order to study the influence of magnetism to magnetized cells, cells’ migration to magnetism and proliferation curve, transwell migration and matrigel migration assays were carried out. Within the magnetic field, magnetized cells can migrate through matrigel and transwell membrane much more efficiently, 174±22 vs. 2±1 per 200X microscopic vision (P |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood.V124.21.2416.2416 |