Loading…
Proapoptotic Bid Preserves HSC Function through Restraint of Necroptosis
Multicellular organisms remove damaged or superfluous cells through a highly regulated cellular process known as programmed cell death. There are two main forms of programmed cell death, apoptosis and necrosis. Necrosis (necroptosis) previously thought to be an unregulated death pathway was recently...
Saved in:
Published in: | Blood 2014-12, Vol.124 (21), p.251-251 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multicellular organisms remove damaged or superfluous cells through a highly regulated cellular process known as programmed cell death. There are two main forms of programmed cell death, apoptosis and necrosis. Necrosis (necroptosis) previously thought to be an unregulated death pathway was recently found to be highly regulated. The manner by which a cell dies has important implications. In apoptotic cell death, caspases digest the cell to cause implosion in an immunologically silent process. In necroptotic cell death, increased Rip kinase signaling effects rupture of the plasma membrane, cellular explosion, and the activation of an inflammatory response.
Death receptors, such as the TNFα receptor, can activate either apoptotic or necroptotic death. The upstream activators and transducers including Caspase-8, Rip1, and Fadd, are common to both forms of cell death. Interestingly, Caspase-8 and c-FlipL, a caspase homolog, were recently shown to inhibit the necrotic pathway during embryonic development through the formation of a catalytically active complex. The BH3-only Bcl-2 family member, Bid is one of the strongest substrates of Caspase-8, placing it at the interface of the apoptotic and necroptotic pathways, and in position to mediate cell death fate.
The role of apoptosis in hematopoietic homeostasis has been well characterized. We developed a mouse model of unrestrained necroptosis in order to determine how unrestrained necroptosis impacts hematopoietic homeostasis and bone marrow function. To do this we generated a mouse model in which apoptosis is prevented by the deletion of the pro-apoptotic effectors Bax and Bak. We further deleted the upstream activator Bid (VavBaxBakBid TKO mice). Surprisingly, these mice die of bone marrow failure due to unrestrained necroptotic cell death. TKO bone marrow displays necroptotic cells by electron microscopy, and markedly increased Rip1 expression by immunofluorescence. TKO mice die of bone marrow failure with marked myeloid dysplasia between the age of 3 and 12 months, and a small number develop leukemia, a phenotype that closely resembles MDS. Further analysis revealed expansion and increased BrdU incorporation of the SLAM-HSC population, consistent with increased HSC proliferation in response to death of more mature cells. To assess function of these HSCs, we performed competitive reconstitution assays. TKO bone marrow initially outcompetes WT bone marrow, but the mice eventually succumb to bone marrow failure |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood.V124.21.251.251 |