Loading…
C-Cbl Regulates c-Mpl Receptor Trafficking and Its Internalization
Megakaryopoiesis is controlled by a variety of hematopoietic growth factors and cytokines in order to maintain physiological levels of circulating platelets. Thrombopoietin (TPO) signalling via its receptor c-Mpl is a key regulator of megakaryopoiesis driving megakaryocyte differentiation, promoting...
Saved in:
Published in: | Blood 2015-12, Vol.126 (23), p.2388-2388 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Megakaryopoiesis is controlled by a variety of hematopoietic growth factors and cytokines in order to maintain physiological levels of circulating platelets. Thrombopoietin (TPO) signalling via its receptor c-Mpl is a key regulator of megakaryopoiesis driving megakaryocyte differentiation, promoting endomitosis and proplatelet formation. Therefore TPO/c-Mpl signalling needs to be tightly regulated to maintain physiological megakaryopoiesis. One of the most effective mechanisms to permanently disable activated signalling proteins is by targeted degradation via lysosomes or proteasomes. Previous studies have identified c-Cbl as an E3 ligase responsible for the ubiquitination of c-Mpl in cell lines. In this study, we investigated the mechanisms of TPO-mediated c-Mpl degradation in primary mouse cells.
In order to determine the potential role of c-Cbl in murine megakaryopoiesis we used a conditional PF4-Cre c-Cbl knockout (ko) mouse model to specifically delete c-Cbl in the megakaryocytic lineage. Megakaryocytes were generated in vitro by culturing bone marrow from WT and PF4-Cre/c-Cbl-floxed (c-Cbl ko) lines for 72 hrs in the presence of rmTPO.
C-Cbl ko mice showed significant bone marrow megakaryocyte hyperplasia, however megakaryocyte numbers in the spleen remained unchanged. Platelets counts were significantly elevated as compared to control mice (1.2 x106 vs. 1.7x106 p=0.0001) and in addition, the platelets from the c-Cbl ko mouse strain were of significantly smaller size (43 vs. 38 fL, p=0.0022). Using a method of in vivo double labelling of platelets, we were able to simultaneously follow the survival of both the entire population of platelets and new platelets which were generated during the last 24 hours. There were more new platelets produced within a 24 h period in the c-Cbl ko mice although the half-life of platelets was similar in the both cohorts. Although c-Cbl ko mice exhibited thrombocytosis, they showed a severe defect in thrombus formation using an in vivo thrombus formation model with Fe3Cl. TPO plasma levels, known to be inversely regulated by circulating platelet numbers, were surprisingly increased (250 vs. 420 pg/ml, p=0.005) in the c-Cbl ko mice. There was no difference in liver mRNA levels in the two cohorts. We therefore looked at c-Mpl protein and mRNA expression in megakaryocytes and found c-Cbl ko mice to express more c-Mpl compared with wild type controls. Surprisingly, we found c-Mpl surface expression to be reduced and internal |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood.V126.23.2388.2388 |