Loading…

Profiles of Telomere Length Adult and Childhood Myelodysplastic Syndromes: A Comparison with Hematologic Diseases

Background: Telomere is a repeatitive sequence at the chromosome end, functioning as a cap, and the length of telomere becomes shortened after each cell devision, eventually going to senescence. Thus, the length of telomere reflects the proliferative capacity of cell and cellular age. Inherited muta...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2015-12, Vol.126 (23), p.5231-5231
Main Authors: Im, Kyongok, Park, Si Nae, Park, Hee Soo, Choi, Sungbin, Hwang, Sang Mee, Lee, Dong Soon
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Telomere is a repeatitive sequence at the chromosome end, functioning as a cap, and the length of telomere becomes shortened after each cell devision, eventually going to senescence. Thus, the length of telomere reflects the proliferative capacity of cell and cellular age. Inherited mutation of telomerase gene results in dyskeratosis congenita characterized by telomere shortening and multi-organ stem cell damage. In contrast, stem cells or tumor cells maintain their telomere length by telomerase or alternative telomere lengthening. To investigate the profiles of telomere length among hematologic malignancies, we measured mean telomere length and heterogeneity of telomere length in various hematologic diseases, in comparison with bone marrow failure syndrome, aplastic anemia (AA) and myelodysplastic syndrome (MDS). Methods: Telomere length was measured by interphase fluorescent in situ hybridization. A total of 153 patients were enrolled; adult MDS (n=53), childhood MDS (n=17), adult AA (n=20), childhood AA (n=46), acute myelogenous leukemia (AML) (n=5), Fanconi anemia (FA) (n=9) and normal control (n=72: normal bone marrow n=36), and normal peripheral blood of children n=36) as a control group. Telomere length was expressed as T/C ratio with adjustment of fluorescence intensity of centromeric signal in chromosome 2. Mean length of telomere and distribution width (SD: standard deviation), were compared to those of normal cells. Results: Mean telomere length (T/C ratio) was 6.7 (adult AA), 5.9 (childhood AA), 5.0 (adult MDS), 4.4 (childhood MDS), 2.1 in FA, 9.4 in AML, and 19.0 in normal control. Heterogeneity of telomere length expressed as telomere length SD was 4.6 in adult AA, 3.7 in childhood AA, 3.5 in adult MDS, 2.5 in childhood MDS, 1.4 in FA and 4.1 in AML. Cell population below 5th percentile of normal control expressed as percentage among total cells, was 75.0% in adult AA, 4.8% in childhood AA, 12.5% in childhood MDS, 87.0% in adult MDS and 0% in AML. When adult MDS patients were divided into two groups, high (¡Ã average) or low (
ISSN:0006-4971
1528-0020
DOI:10.1182/blood.V126.23.5231.5231