Loading…
Increased red cell calcium, decreased calcium adenosine triphosphatase, and altered membrane proteins during fava bean hemolysis in glucose-6- phosphate dehydrogenase-deficient (Mediterranean variant) individuals
RBCs from four glucose-6-phosphate dehydrogenase (G6PD)-deficient (Mediterranean variant) subjects were studied during fava bean hemolysis. In the density-fractionated RBC calcium level, Ca2+-ATPase activity, reduced glutathione level, and ghost protein pattern were studied. In the bottom fraction,...
Saved in:
Published in: | Blood 1985-08, Vol.66 (2), p.302-305 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | RBCs from four glucose-6-phosphate dehydrogenase (G6PD)-deficient (Mediterranean variant) subjects were studied during fava bean hemolysis. In the density-fractionated RBC calcium level, Ca2+-ATPase activity, reduced glutathione level, and ghost protein pattern were studied. In the bottom fraction, containing most heavily damaged RBCs, calcium level ranged from 143 to 244 mumol/L RBCs (healthy G6PD- deficient controls: 17 +/- 5 mumol/L RBCs). The Ca2+-ATPase activity ranged from 0.87 to 1.84 mumol ATP consumed/g Hb/min (healthy G6PD- deficient controls: 2.27 +/- 0.4). Sodium dodecyl sulfate- polyacrylamide gel electrophoresis (SDS-PAGE) of ghosts showed: (1) the presence of high mol wt aggregates (in three cases they were reduced by dithioerythritol; in one case, only partial reduction was possible); (2) the presence of multiple, scattered new bands; and (3) the reduction of band 3. Oxidant-mediated damage to active calcium extrusion, hypothetically associated with increased calcium permeability, may explain the large increase in calcium levels. They, in turn, could activate calcium-dependent protease activity, giving rise to the profound changes in the ghost protein pattern. |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood.V66.2.302.bloodjournal662302 |