Loading…

Nitric oxide interactions with cobalamins: biochemical and functional consequences

Nitric oxide (NO) is a paramagnetic gas that has been implicated in a wide range of biologic functions. The common pathway to evoke the functional response frequently involves the formation of an iron- nitrosyl complex in a target (heme) protein. In this study, we report on the interactions between...

Full description

Saved in:
Bibliographic Details
Published in:Blood 1996-09, Vol.88 (5), p.1857-1864
Main Authors: Brouwer, M, Chamulitrat, W, Ferruzzi, G, Sauls, DL, Weinberg, JB
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nitric oxide (NO) is a paramagnetic gas that has been implicated in a wide range of biologic functions. The common pathway to evoke the functional response frequently involves the formation of an iron- nitrosyl complex in a target (heme) protein. In this study, we report on the interactions between NO and cobalt-containing vitamin B12 derivatives. Absorption spectroscopy showed that of the four Co(III) derivatives (cyanocobalamin [CN-Cbl], aquocobalamin [H2O-Cbl], adenosylcobalamin [Ado-Cbl], and methylcobalamin [MeCbl]), only the H2O- Cbl combined with NO. In addition, electron paramagnetic resonance spectroscopy of H2O-Cbl preparations showed the presence of a small amount of Cob-(II)alamin that was capable of combining with NO. The Co(III)-NO complex was very stable, but could transfer its NO moiety to hemoglobin (Hb). The transfer was accompanied by a reduction of the Co(III) to Co(II), indicating that NO+ (nitrosonium) was the leaving group. In accordance with this, the NO did not combine with the Hb Fe(II)-heme, but most likely with the Hb cysteine-thiolate. Similarly, the Co(III)-NO complex was capable of transferring its NO to glutathione. Ado-Cbl and Me-Cbl were susceptible to photolysis, but CN- Cbl and H2O-Cbl were not. The homolytic cleavage of the Co(III)-Ado or Co(III)-Me bond resulted in the reduction of the metal. When photolysis was performed in the presence of NO, formation of NO-Co(II) was observed. Co(II)-nitrosyl oxidized slowly to form Co(III)-nitrosyl. The capability of aquocobalamin to combine with NO had functional consequences. We found that nitrosylcobalamin had diminished ability to serve as a cofactor for the enzyme methionine synthase, and that aquocobalamin could quench NO-mediated inhibition of cell proliferation. Our in vitro studies therefore suggest that interactions between NO and cobalamins may have important consequences in vivo.
ISSN:0006-4971
1528-0020
DOI:10.1182/blood.V88.5.1857.bloodjournal8851857