Loading…
Deoxyadenosine analogs induce programmed cell death in chronic lymphocytic leukemia cells by damaging the DNA and by directly affecting the mitochondria
Adenine deoxynucleosides induce apoptosis in quiescent lymphocytes and are thus useful drugs for the treatment of indolent lymphoproliferative diseases. To explain why deoxyadenosine and its analogs are toxic to a cell that is not undergoing replicative DNA synthesis, several mechanisms have been pr...
Saved in:
Published in: | Blood 2000-11, Vol.96 (10), p.3537-3543 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Adenine deoxynucleosides induce apoptosis in quiescent lymphocytes and are thus useful drugs for the treatment of indolent lymphoproliferative diseases. To explain why deoxyadenosine and its analogs are toxic to a cell that is not undergoing replicative DNA synthesis, several mechanisms have been proposed, including the direct binding of dATP to the pro-apoptotic factor Apaf-1 and the activation of the caspase-9 and -3 pathways. In this study it is shown, by means of several assays on whole cells and isolated mitochondria, that 2-chloro-2′-deoxyadenosine (2CdA) and 2-choloro-2′-ara-fluorodeoxyadenosine (CaFdA) disrupt the integrity of mitochondria from primary chronic lymphocytic leukemia (B-CLL) cells. The nucleoside-induced damage leads to the release of the pro-apoptotic mitochondrial proteins cytochrome c and apoptosis-inducing factor. The other adenine deoxynucleosides tested displayed comparable DNA-damaging potency but did not affect mitochondrial function. Interference with mitochondrial integrity, thus, may be a factor in the potent cytotoxic effects of 2CdA and CaFdA toward nondividing lymphocytes. |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood.V96.10.3537 |