Loading…
Response to hypoxia involves transforming growth factor-β2 and Smad proteins in human endothelial cells
Oxygen deprivation (hypoxia) is a consistent component of ischemia that induces an inflammatory and prothrombotic response in the endothelium. In this report, it is demonstrated that exposure of endothelial cells to hypoxia (1% O2) increases messenger RNA and protein levels of transforming growth fa...
Saved in:
Published in: | Blood 2001-12, Vol.98 (12), p.3324-3331 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Oxygen deprivation (hypoxia) is a consistent component of ischemia that induces an inflammatory and prothrombotic response in the endothelium. In this report, it is demonstrated that exposure of endothelial cells to hypoxia (1% O2) increases messenger RNA and protein levels of transforming growth factor-β2 (TGF-β2), a cytokine with potent regulatory effects on vascular inflammatory responses. Messenger RNA levels of the TGF-β2 type II membrane receptor, which is a serine threonine kinase, also increased. The stimulatory effect of hypoxia was found to occur at the level of transcription of the TGF-β2 gene and involves Smad proteins, a class of intracellular signaling proteins that mediates the downstream effects of TGF-β receptors. Transient transfection studies showed that the region spanning −77 and −40 base pairs within the TGF-β2 promoter (harboring a Smad-binding “CAGA box”) is activated in hypoxic cells compared with nonhypoxic controls (P < .01). Hypoxia also stimulated transcription from another promoter, 3TP-Lux, a reporter construct responsive to Smads and TGF-β. In addition, specific binding to a Smad-binding oligonucleotide was observed with nuclear extracts from hypoxic endothelial cells but not from nonhypoxic cells. It is concluded that Smad proteins, which can regulate endothelial responses to mechanical and inflammatory stress, also may play an important role in vascular responses to hypoxia and ischemia. |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood.V98.12.3324 |