Loading…

Moonshine

Monstrous moonshine relates distinguished modular functions to the representation theory of the Monster . The celebrated observations that 1 = 1 , 196884 = 1 + 196883 , 21493760 = 1 + 196883 + 21296876 , … … ( * ) illustrate the case of J ( τ )= j ( τ )−744, whose coefficients turn out to be sums of...

Full description

Saved in:
Bibliographic Details
Published in:Research in the mathematical sciences 2015-12, Vol.2 (1), Article 11
Main Authors: Duncan, John FR, Griffin, Michael J, Ono, Ken
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-2bb13bec1873953ffa4bc4b3ccbd494a9121a8c1a1bc68a155fcc10a4d473df73
cites cdi_FETCH-LOGICAL-c288t-2bb13bec1873953ffa4bc4b3ccbd494a9121a8c1a1bc68a155fcc10a4d473df73
container_end_page
container_issue 1
container_start_page
container_title Research in the mathematical sciences
container_volume 2
creator Duncan, John FR
Griffin, Michael J
Ono, Ken
description Monstrous moonshine relates distinguished modular functions to the representation theory of the Monster . The celebrated observations that 1 = 1 , 196884 = 1 + 196883 , 21493760 = 1 + 196883 + 21296876 , … … ( * ) illustrate the case of J ( τ )= j ( τ )−744, whose coefficients turn out to be sums of the dimensions of the 194 irreducible representations of . Such formulas are dictated by the structure of the graded monstrous moonshine modules. Recent works in moonshine suggest deep relations between number theory and physics. Number theoretic Kloosterman sums have reappeared in quantum gravity, and mock modular forms have emerged as candidates for the computation of black hole degeneracies. This paper is a survey of past and present research on moonshine. We also compute the quantum dimensions of the monster orbifold and obtain exact formulas for the multiplicities of the irreducible components of the moonshine modules. These formulas imply that such multiplicities are asymptotically proportional to dimensions. For example, the proportion of 1’s in (*) tends to dim ( χ 1 ) ∑ i = 1 194 dim ( χ i ) = 1 5844076785304502808013602136 = 1.711 … × 1 0 − 28 . 2010 Mathematics Subject Classification: 11F11; 11 F22; 11F37; 11F50; 20C34; 20C35
doi_str_mv 10.1186/s40687-015-0029-6
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1186_s40687_015_0029_6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1186_s40687_015_0029_6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-2bb13bec1873953ffa4bc4b3ccbd494a9121a8c1a1bc68a155fcc10a4d473df73</originalsourceid><addsrcrecordid>eNp9j7tOxDAQRS0EEtGyH8BHGGbsiR8lWvGSFtFAbdkTG3YFCbKh4O_JKhRUVHOLOVf3CHGOcIHozGUjMM5KwF4CKC_NkegUeiu9I3v8J5-KdWt7AEBrNGnoRPcwTWN73Y35TJyU-Nby-veuxPPN9dPmTm4fb-83V1vJyrlPqVJCnTKjs9r3upRIiSlp5jSQp-hRYXSMERMbF7HvCzNCpIGsHorVK4FLL9eptZpL-Ki791i_A0I46IRFJ8w64aATzMyohWnz7_iSa9hPX3WcZ_4D_QBxvUvB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Moonshine</title><source>Springer Nature</source><creator>Duncan, John FR ; Griffin, Michael J ; Ono, Ken</creator><creatorcontrib>Duncan, John FR ; Griffin, Michael J ; Ono, Ken</creatorcontrib><description>Monstrous moonshine relates distinguished modular functions to the representation theory of the Monster . The celebrated observations that 1 = 1 , 196884 = 1 + 196883 , 21493760 = 1 + 196883 + 21296876 , … … ( * ) illustrate the case of J ( τ )= j ( τ )−744, whose coefficients turn out to be sums of the dimensions of the 194 irreducible representations of . Such formulas are dictated by the structure of the graded monstrous moonshine modules. Recent works in moonshine suggest deep relations between number theory and physics. Number theoretic Kloosterman sums have reappeared in quantum gravity, and mock modular forms have emerged as candidates for the computation of black hole degeneracies. This paper is a survey of past and present research on moonshine. We also compute the quantum dimensions of the monster orbifold and obtain exact formulas for the multiplicities of the irreducible components of the moonshine modules. These formulas imply that such multiplicities are asymptotically proportional to dimensions. For example, the proportion of 1’s in (*) tends to dim ( χ 1 ) ∑ i = 1 194 dim ( χ i ) = 1 5844076785304502808013602136 = 1.711 … × 1 0 − 28 . 2010 Mathematics Subject Classification: 11F11; 11 F22; 11F37; 11F50; 20C34; 20C35</description><identifier>ISSN: 2197-9847</identifier><identifier>EISSN: 2197-9847</identifier><identifier>DOI: 10.1186/s40687-015-0029-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Mathematics ; Mathematics and Statistics ; Review</subject><ispartof>Research in the mathematical sciences, 2015-12, Vol.2 (1), Article 11</ispartof><rights>Duncan et al. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-2bb13bec1873953ffa4bc4b3ccbd494a9121a8c1a1bc68a155fcc10a4d473df73</citedby><cites>FETCH-LOGICAL-c288t-2bb13bec1873953ffa4bc4b3ccbd494a9121a8c1a1bc68a155fcc10a4d473df73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Duncan, John FR</creatorcontrib><creatorcontrib>Griffin, Michael J</creatorcontrib><creatorcontrib>Ono, Ken</creatorcontrib><title>Moonshine</title><title>Research in the mathematical sciences</title><addtitle>Mathematical Sciences</addtitle><description>Monstrous moonshine relates distinguished modular functions to the representation theory of the Monster . The celebrated observations that 1 = 1 , 196884 = 1 + 196883 , 21493760 = 1 + 196883 + 21296876 , … … ( * ) illustrate the case of J ( τ )= j ( τ )−744, whose coefficients turn out to be sums of the dimensions of the 194 irreducible representations of . Such formulas are dictated by the structure of the graded monstrous moonshine modules. Recent works in moonshine suggest deep relations between number theory and physics. Number theoretic Kloosterman sums have reappeared in quantum gravity, and mock modular forms have emerged as candidates for the computation of black hole degeneracies. This paper is a survey of past and present research on moonshine. We also compute the quantum dimensions of the monster orbifold and obtain exact formulas for the multiplicities of the irreducible components of the moonshine modules. These formulas imply that such multiplicities are asymptotically proportional to dimensions. For example, the proportion of 1’s in (*) tends to dim ( χ 1 ) ∑ i = 1 194 dim ( χ i ) = 1 5844076785304502808013602136 = 1.711 … × 1 0 − 28 . 2010 Mathematics Subject Classification: 11F11; 11 F22; 11F37; 11F50; 20C34; 20C35</description><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Review</subject><issn>2197-9847</issn><issn>2197-9847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9j7tOxDAQRS0EEtGyH8BHGGbsiR8lWvGSFtFAbdkTG3YFCbKh4O_JKhRUVHOLOVf3CHGOcIHozGUjMM5KwF4CKC_NkegUeiu9I3v8J5-KdWt7AEBrNGnoRPcwTWN73Y35TJyU-Nby-veuxPPN9dPmTm4fb-83V1vJyrlPqVJCnTKjs9r3upRIiSlp5jSQp-hRYXSMERMbF7HvCzNCpIGsHorVK4FLL9eptZpL-Ki791i_A0I46IRFJ8w64aATzMyohWnz7_iSa9hPX3WcZ_4D_QBxvUvB</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Duncan, John FR</creator><creator>Griffin, Michael J</creator><creator>Ono, Ken</creator><general>Springer International Publishing</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151201</creationdate><title>Moonshine</title><author>Duncan, John FR ; Griffin, Michael J ; Ono, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-2bb13bec1873953ffa4bc4b3ccbd494a9121a8c1a1bc68a155fcc10a4d473df73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duncan, John FR</creatorcontrib><creatorcontrib>Griffin, Michael J</creatorcontrib><creatorcontrib>Ono, Ken</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Research in the mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duncan, John FR</au><au>Griffin, Michael J</au><au>Ono, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moonshine</atitle><jtitle>Research in the mathematical sciences</jtitle><stitle>Mathematical Sciences</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>2</volume><issue>1</issue><artnum>11</artnum><issn>2197-9847</issn><eissn>2197-9847</eissn><abstract>Monstrous moonshine relates distinguished modular functions to the representation theory of the Monster . The celebrated observations that 1 = 1 , 196884 = 1 + 196883 , 21493760 = 1 + 196883 + 21296876 , … … ( * ) illustrate the case of J ( τ )= j ( τ )−744, whose coefficients turn out to be sums of the dimensions of the 194 irreducible representations of . Such formulas are dictated by the structure of the graded monstrous moonshine modules. Recent works in moonshine suggest deep relations between number theory and physics. Number theoretic Kloosterman sums have reappeared in quantum gravity, and mock modular forms have emerged as candidates for the computation of black hole degeneracies. This paper is a survey of past and present research on moonshine. We also compute the quantum dimensions of the monster orbifold and obtain exact formulas for the multiplicities of the irreducible components of the moonshine modules. These formulas imply that such multiplicities are asymptotically proportional to dimensions. For example, the proportion of 1’s in (*) tends to dim ( χ 1 ) ∑ i = 1 194 dim ( χ i ) = 1 5844076785304502808013602136 = 1.711 … × 1 0 − 28 . 2010 Mathematics Subject Classification: 11F11; 11 F22; 11F37; 11F50; 20C34; 20C35</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s40687-015-0029-6</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2197-9847
ispartof Research in the mathematical sciences, 2015-12, Vol.2 (1), Article 11
issn 2197-9847
2197-9847
language eng
recordid cdi_crossref_primary_10_1186_s40687_015_0029_6
source Springer Nature
subjects Applications of Mathematics
Computational Mathematics and Numerical Analysis
Mathematics
Mathematics and Statistics
Review
title Moonshine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A37%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moonshine&rft.jtitle=Research%20in%20the%20mathematical%20sciences&rft.au=Duncan,%20John%20FR&rft.date=2015-12-01&rft.volume=2&rft.issue=1&rft.artnum=11&rft.issn=2197-9847&rft.eissn=2197-9847&rft_id=info:doi/10.1186/s40687-015-0029-6&rft_dat=%3Ccrossref_sprin%3E10_1186_s40687_015_0029_6%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-2bb13bec1873953ffa4bc4b3ccbd494a9121a8c1a1bc68a155fcc10a4d473df73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true