Loading…
The Serum-Resistant Transfection Evaluation and Long-Term Stability of Gene Delivery Dry Powder Based on Mesoporous Silica Nanoparticles and Polyethyleneimine by Freezing-Drying
Mesoporous silica nanoparticles (MSNs) with large surface area, tunable pore size, and low toxicity can act as suitable vehicles for drug and gene delivery. An MSN/DNA/PEI complex delivery system was prepared by using MSNs to hold plasmid DNA coated with polyethyleneimine (PEI), and the dry powder f...
Saved in:
Published in: | AAPS PharmSciTech 2017-07, Vol.18 (5), p.1536-1543 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mesoporous silica nanoparticles (MSNs) with large surface area, tunable pore size, and low toxicity can act as suitable vehicles for drug and gene delivery. An MSN/DNA/PEI complex delivery system was prepared by using MSNs to hold plasmid DNA coated with polyethyleneimine (PEI), and the dry powder formulation was produced by freeze-drying with trehalose as lyoprotectant. The MSN/DNA/PEI complexes successfully enhanced the gene expression with about 1.5-fold higher efficiency as compared with the control, and even better effects and lower toxicity were achieved at lower content of PEI. Also, this gene delivery system showed nearly sixfold higher efficiency in the serum-containing condition than the control, so further application of these vehicles
in vivo
is highly appreciated. Besides, the trehalose containing lyophilized formulation could hold the availability for at least 4Â months of storing at room temperature, presenting the potential for industrial production and transportation of gene therapy. |
---|---|
ISSN: | 1530-9932 1530-9932 |
DOI: | 10.1208/s12249-016-0617-9 |