Loading…
Hollow ion emission driven by pulsed intense X-ray fields
Transient hollow ion atomic radiation field kinetics is developed which shows that short pulse intense narrow-band X-ray sources enable the rise of hollow ion population densities in dense plasmas more than 10 orders of magnitude higher than without pump. The subsequent hollow ion X-ray emission, wh...
Saved in:
Published in: | Europhysics letters 2007-01, Vol.77 (2), p.24001-24001 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Transient hollow ion atomic radiation field kinetics is developed which shows that short pulse intense narrow-band X-ray sources enable the rise of hollow ion population densities in dense plasmas more than 10 orders of magnitude higher than without pump. The subsequent hollow ion X-ray emission, which will escape even extremely high-density plasmas without detrimental absorption, will open up a new field of research and allow novel studies of atomic systems in intense Coulomb fields. Simulations including relaxation effects show that for parameters of currently established free-electron X-ray lasers atomic chain reactions can be initiated which drive efficient hollow ion X-ray emission. |
---|---|
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/0295-5075/77/24001 |