Loading…
Optical conductivity study of screening of many-body effects in graphene interfaces
Theoretical studies have shown that electron-electron (e-e) and electron-hole (e-h) interactions play important roles in many observed quantum properties of graphene making this an ideal system to study many-body effects. In this report we show that spectroscopic ellipsometry can enable us to measur...
Saved in:
Published in: | Europhysics letters 2012-09, Vol.99 (6), p.67009 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Theoretical studies have shown that electron-electron (e-e) and electron-hole (e-h) interactions play important roles in many observed quantum properties of graphene making this an ideal system to study many-body effects. In this report we show that spectroscopic ellipsometry can enable us to measure this interactions quantitatively. We present spectroscopic data in two extreme systems of graphene on quartz (GOQ), an insulator, and graphene on copper (GOC), a metal which show that for GOQ, both e-e and e-h interactions dominate while for GOC e-h interactions are screened. The data further enables the estimation of the strength of the many-body interaction through the effective fine-structure constant, α*g. The α*g for GOQ indicates a strong correlation with an almost energy-independent value of about 1.37. In contrast, the α*g value of GOC is photon energy dependent and is almost two orders of magnitude lower at low energies indicating very weak correlation. |
---|---|
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/0295-5075/99/67009 |