Loading…
Configuration entropy for N-Dirac fermions with dissipation and external field: An effective-mass phase transition
Dirac fermions in solid state are defined through a homogeneous dispersion relation of degree one. Consequently, the group velocity, having a superior bound, becomes invariant under spatial scaling. This fact allows considering the dynamics of a family or set of Dirac fermions at different spatial d...
Saved in:
Published in: | Europhysics letters 2022-05, Vol.138 (3), p.36004 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dirac fermions in solid state are defined through a homogeneous dispersion relation of degree one. Consequently, the group velocity, having a superior bound, becomes invariant under spatial scaling. This fact allows considering the dynamics of a family or set of Dirac fermions at different spatial dimensions and subjected to an external field and dissipation. From the degeneration of the stationary states, the non-Hermitian dynamics allows defining the configuration entropy. With the applied external field being the control parameter, an inflection point becomes associated with entropy. Consequently, an effective-mass phase transition is conjectured including the usual Dirac fermions in a graphene sheet. The critical field and the critical angle are analytically calculated. |
---|---|
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/0295-5075/ac39eb |