Loading…
Surface relaxation of lyotropic lamellar phases
We study the relaxation modes of an interface between a lyotropic lamellar phase and a gas or a simple liquid. The response is found to be qualitatively different from those of both simple liquids and single-component smectic-A liquid crystals. At low rates it is governed by a non-inertial, diffusiv...
Saved in:
Published in: | Europhysics letters 2006-03, Vol.73 (6), p.871-877 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the relaxation modes of an interface between a lyotropic lamellar phase and a gas or a simple liquid. The response is found to be qualitatively different from those of both simple liquids and single-component smectic-A liquid crystals. At low rates it is governed by a non-inertial, diffusive mode whose decay rate increases quadratically with wave number, $|\omega|=Aq^2$. The coefficient A depends on the restoring forces of surface tension, compressibility and bending, while the dissipation is dominated by the so-called slip mechanism, i.e., relative motion of the two components of the phase parallel to the lamellae. This surface mode has a large penetration depth which, for sterically stabilised phases, is of order $(dq^2)^{-1}$, where d is the microscopic lamellar spacing. |
---|---|
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/epl/i2005-10476-4 |